Skip to main content
Log in

Part 1: Dynamical Characterization of a Frictionally Excited Beam

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of an experimental frictionally excited beam areinvestigated. The friction is characterized and shown to involve contactcompliance. Beam displacements are approximated from strain gagesignals. The system dynamics are rich, including a variety of periodic,quasi-periodic and chaotic responses. Proper orthogonal decomposition isapplied to chaotic data to obtain information about the spatialcoherence of the beam dynamics. Responses for different parameter valuesresult in a different set of proper orthogonal modes. The number ofproper orthogonal modes that account for 99.99% of the signalpower is compared to the corresponding number of linear normal modes,and it is verified that the proper orthogonal modes are more efficientin capturing the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azeez, M. F. A. and Vakakis, A. F., 'Using Karhunen-Loève decomposition to analyze the vibroimpact response of a rotor', in Proceedings of the Seventh Conference on Nonlinear Vibrations, Stability and Dynamics of Structures, Blacksburg, July 1998.

  2. Berkooz, G., Holmes, P., and Lumley, J. L., 'The proper orthogonal decomposition in the analysis of turbulent flows', Annual Review of Fluid Mechanics 25, 1993, 539-575.

    Google Scholar 

  3. Broomhead, D. P. and King, G. P., 'Extracting qualitative dynamics from experimental data', Physica D 20, 1986, 217-226.

    Google Scholar 

  4. Canudas de Wit, C., Olsson, H., Astrom, K. J., and Lischinsky, P., 'A new model for control of systems with friction', IEEE Transactions on Automatic Control 40(3), 1995, 419-425.

    Google Scholar 

  5. Courtney-Pratt, J. S. and Eisner, E., 'The effect of a tangential force on the contact of metallic bodies', Proceedings of the Royal Society of London, A 238, 1957, 529-550.

    Google Scholar 

  6. Cusumano, J. P. and Bai, B. Y., 'Period-infinity periodic motions, chaos and spatial coherence in a 10 degree of freedom impact oscillator', Chaos, Solitons and Fractals 3(5), 1993, 515-535.

    Google Scholar 

  7. Cusumano, J. P., Sharkady, M. T., and Kimble, B.W., 'Spatial coherence measurements of a chaotic flexiblebeam impact oscillator', in Aerospace Structures: Nonlinear Dynamics and System Response, ASME AD-Vol. 33, 1993, pp. 13-22.

    Google Scholar 

  8. Dahl, P., 'A solid friction model', Technical Report TOR-0158 (3197-18)-1, Aerospace Corp., El Segundo, CA, 1968.

    Google Scholar 

  9. Davies, M. A. and Moon, F. C., 'Solitons, chaos, and modal interactions in periodic structures', in Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume, A. Guran (ed.), World Scientific, Singapore, 1997, pp. 119-143.

    Google Scholar 

  10. Feeny, B. and Kappagantu, R., 'On the physical interpretation of proper orthogonal modes in vibrations', Journal of Sound and Vibration 211(4), 1998, 607-616.

    Google Scholar 

  11. Ferri, A. A., 'Friction damping and isolation systems', Journal of Mechanical Design 117(B), 1995, 196-206

    Google Scholar 

  12. Ferri, A. A. and Heck, B. S., 'Vibration analysis of dry damped turbine blades using singular perturbation theory', Journal of Vibration and Acoustics 120(2), 1998, 588-595.

    Google Scholar 

  13. Fitzsimons, P.M. and Rui, C., 'Determining low dimensional models of distributed systems', in Advances in Robust and Nonlinear Control Systems, ASME DSC-Vol. 53, 1993, pp. 9-15.

    Google Scholar 

  14. Fraser, A. M. and Swinney, H. L., 'Information and entropy in strange attractors', Physical Review 33A, 1986, 1134.

    Google Scholar 

  15. Georgiou, I. T., Schwartz, I., Emaci, E., and Vakakis, A., 'Interaction between slow and fast oscillations in and infinite degree-of-freedom linear system coupled to a nonlinear subsystem: Theory and experiment', Journal of Applied Mechanics 66(2), 1999, 448-459.

    Google Scholar 

  16. Georgiou, I. T. and Schwartz, I. B., 'A proper orthogonal decomposition approach to coupled mechanical systems', in Nonlinear Dynamics and Controls, ASME DE-Vol. 91, 1996, pp. 7-12.

    Google Scholar 

  17. Griffin, J. H., 'Friction damping of resonant stresses in gas turbine engine airfoils', Journal of Engineering for Power 102, 1980, 329-333.

    Google Scholar 

  18. Guillen, J. and Pierre, Ch., 'Analysis of the forced response of dry-friction dampened structural systems using and efficient hybrid frequency-time method', in Nonlinear Dynamics and Controls, ASME DE-Vol. 91, 1996, pp. 41-50.

    Google Scholar 

  19. Harnoy, A., Friedland, B., and Rachoor, H., 'Modeling and simulations of elastic and friction forces in lubricated bearing for precise motion control', Wear 172, 1994, 155-165.

    Google Scholar 

  20. Kappagantu, R. V., 'An “optimal” modal reduction of systems with frictional excitation', Ph.D. Thesis, Michigan State University, East Lansing, MI, 1997.

    Google Scholar 

  21. Kennel, M. B., Brown, R., and Abarbanel, H. D. I., 'Determining embedding dimension for phase-space reconstruction using a geometrical construction', Physics Letters A 45(6), 1992, 3403-3411.

    Google Scholar 

  22. Kreuzer, E. and Kust, O., 'Proper orthogonal decomposition-an efficient means of controlling self-excited vibrations of long torsonial strings', in Nonlinear Dynamics and Controls, ASME DE-Vol. 91, 1996, pp. 105-110.

    Google Scholar 

  23. Liang, J.-W. and Feeny, B. F., 'Dynamical friction behavior in a forced oscillator with a compliant contact', Journal of Applied Mechanics 65(1), 1998, 250-257.

    Google Scholar 

  24. Lumley, J. L., 'The structure of inhomogeneous turbulent flow', in Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarski (eds.), Nauka, Moscow, 1967, pp. 166-178.

    Google Scholar 

  25. Ma, X., Azeez, M. A. F., and Vakakis, A. F., 'Nonparametric nonlinear system identification of a nonlinear flexible system using proper orthogonal mode decomposition', in Proceedings of the Seventh Conference on Nonlinear Vibrations, Stability and Dynamics of Structures, Blacksburg, July 1998.

  26. Murphy, K. D., 'Using the Karhunen-Loève decomposition to examine chaotic snap-through oscillations of a buckled plate', in Proceedings of the Sixth Conference on Nonlinear Vibrations, Stability and Dynamics of Structures, Blacksburg, June 1996.

  27. Oden, J. T. and Martins, J. A. C., 'Models and computational methods for dynamic friction phenomena', Computer Methods in Applied Mechanics and Engineering 52, 1985, 527-634.

    Google Scholar 

  28. Ravindra, B., 'Comments on the physical interpretation of proper orthogonal modes in vibrations', Journal of Sound and Vibration 219(1), 1999, 189-192.

    Google Scholar 

  29. Sanliturk, K. Y. and Ewins, D. J., 'Modeling two-dimensional friction contact and its application using harmonic balance method', Journal of Sound and Vibration 193(2), 1996, 511-524.

    Google Scholar 

  30. Sipcic, S. R., Benguedouar, A., and Pecore, A., 'Karhunen-Loève decomposition in dynamical modeling', in Proceedings of the Sixth Conference on Nonlinear Vibrations, Stability and Dynamics of Structures, Blacksburg, June 1996.

  31. Threlfall, D. C., 'The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM', Zeitschrift für angewandte Mathematik und Mechanik 76(8), 1978, 475-483.

    Google Scholar 

  32. Wang, J.-H., 'Design of a friction damper to control vibration of turbine blades', in Dynamics and Friction: Modeling, Analysis, and Experiment, A. Guran, F. Pfeiffer, and K. Popp (eds.), World Scientific, Singapore, 1996, pp. 169-195.

    Google Scholar 

  33. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., 'Determining Lyapunov exponents from a time series', Physica D 16, 1985, 285-317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappagantu, R.V., Feeny, B.F. Part 1: Dynamical Characterization of a Frictionally Excited Beam. Nonlinear Dynamics 22, 317–333 (2000). https://doi.org/10.1023/A:1008344005183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008344005183

Navigation