Skip to main content
Log in

Microbial degradation of polymeric coatings measured by electrochemical impedance spectroscopy

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This paper reports results of biodegradation studies of polyimide coatings exposed to a mixed fungal culture using electrochemical impedance spectroscopy (EIS). The fungal consortium was originally isolated from degraded polyimides and identified species include Aspergillus versicolor, Cladosporium cladosporioides, and a Chaetomium species. Actively growing fungi on polyimides yield distinctive EIS spectra through time, indicative of failure of the polymer integrity compared to the uninoculated controls. An initial decline in coating resistance was related to the partial ingress of water molecules and ionic species into the polymeric matrices. This was followed by further degradation of the polymers by activity of the fungi. The relationship between the changes in impedance spectra and microbial degradation of the coatings was further supported by scanning electron microscopy, showing extensive colonization of the polyimide surfaces by the fungi. Our data indicate that EIS can be a sensitive and informative technique for evaluating the biosusceptibility of polymers and coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM (American Society for Testing and Materials) (1993a) Standard test method for determining the aerobic biodegradability of degradable plastics by specific microorganisms. In: 1993 Annual Book of ASTM Standards, Volume 08.03, D5247-92 (pp 401- 404). ASTM, Philadelphia, Pennsylvania, USA

    Google Scholar 

  • ____ (1993b) Standard practice for determining resistance of synthetic polymeric materials to fungi. In: 1993 Annual Book of ASTM Standards, Volume 08.03, G2190 (pp 527- 529). ASTM, Philadelphia, Pennsylvania, USA

    Google Scholar 

  • ____ (1993c) Standard practice for determining resistance of plastics to bacteria. In: 1993 Annual Book of ASTM Standards, Volume 08.03, G2276 (pp 531- 533). ASTM, Philadelphia, Pennsylvania, USA

    Google Scholar 

  • Ezeonu IM, Noble JA, Simmons RB, Price DL, Crow SA & Ahearn DG (1994a) Effect of relative humidity on fungal colonization of fiberglass insulation. Appl. Environ. Microbiol. 60: 2149- 2151

    Google Scholar 

  • Ezeonu IM, Price DL, Simmons RB, Crow SA & Ahearn DG(1994b) Fungal production of volatiles during growth on fiberglass. Appl. Environ. Microbiol. 60: 4172- 4173

    Google Scholar 

  • Ferraz O, Cavalcanti E & Di Sarli AR (1995) The characterization of protective properties for some naval steel/polimeric coating/3% NaCl solution systems by EIS and visual assessment. Corrosion Sci. 37: 643- 652

    Google Scholar 

  • Ford T & Mitchell R (1990) The ecology of microbial corrosion. Adv. Microb. Ecol. 11: 231- 261

    Google Scholar 

  • Ford T, LaPointe E, Mitchell R & Mitton DB (1995) Role of microorganisms in failure of complex polymers and protective coatings. In: Biodeterioration and Biodegradation 9, the 9th International Biodeterioration and Biodegradation Symposium (pp 554- 561). Institution of Chemical Engineers, Warwickshire, UK

    Google Scholar 

  • Gross RA, Gu J-D, Eberiel D, Nelson M & McCarthy SP (1993) Cellulose acetate biodegradability in simulated aerobic composting and anaerobic bioreactors as well as by a bacterial isolate derived from compost. In: Kaplan D, Thomas E & Ching C (Eds) Fundamentals of Biodegradable Materials and Packaging (pp 257- 279). Technomic Publishing Co., Lancaster, Pennsylvania, USA

    Google Scholar 

  • Gross RA, Gu J-D, Eberiel D & McCarthy SP (1995) Laboratory scale composting test methods to determine polymer degradability: model studies on cellulose acetate. In: Albertsson A & Huang S (Eds) Degradable Polymers, Recycling and Plastics Waste Management (pp 21- 36). Marcel Dekker, Inc., New York, USA

    Google Scholar 

  • Gu J-D, Coulter S, Eberiel D, McCarthy SP & Gross RA (1993a) A respirometric method to measure mineralization of polymeric materials in a matured compost environment. J. Environ. Polym. Degr. 1: 293- 299

    Google Scholar 

  • Gu J-D, Eberiel DT, McCarthy SP & Gross RA (1993b) Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. J. Environ. Polym. Degr. 1: 143- 153

    Google Scholar 

  • ____ (1993c) Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments. J. Environ. Polym. Degr. 1: 281- 291

    Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG & Mitchell R (1994a) Microbial degradation of polymeric materials. In: Naguy T (Ed) Proceedings of the Tri-Service Conference on Corrosion (pp 291- 301), U. S. Government Printing Office, Washington DC, USA

    Google Scholar 

  • Gu J-D, Yang S, Welton R, Eberiel D, McCarthy SP & Gross RA (1994b) Effects of environmental parameters on degradability of polymer films. J. Environ. Polym. Degr. 2: 129- 135

    Google Scholar 

  • Gu J-D & Mitchell R (1995) Microbiological influenced corrosion of metal, degradation and deterioration of polymeric materials of space application. Chinese J. Mat. Res. 9 (Suppl.): 473- 389

    Google Scholar 

  • Gu J-D, Ford T & Mitchell R (1995a) Microbial degradation of electronic insulating polymers. In: Abstracts of the American Society for Microbiology Meeting (p 262), ASM, Washington DC, USA

    Google Scholar 

  • Gu J-D, Ford TE, Mitton B & Mitchell R (1995b) Microbial degradation of complex polymeric materials used as insulation in electronic packaging materials. Corrosion/95, Paper No. 202, National Association of Corrosion Engineers, Houston, Texas, USA.

    Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG & Mitchell R (1995c) Microbial deterioration of fiber reinforced composite materials. In: Angell P, Borenstein SW, Buchanan RA, Dexter SC, Dowling NJE, Little BJ, Lundin CD, McNeil MB, Pope DH, Tatnall RE, White DC & Ziegenfuss HG (Eds) International Conference on Microbial Induced Corrosion (pp 25/1- 25/7), NACE International, Houston, Texas, USA

    Google Scholar 

  • ____ (1995d) Microbial deterioration of fiber reinforced polymeric materials. In: Scully JR (Ed) Corrosion/95 Research in Progress Symposium (pp 16- 17), NACE International, Houston, Texas, USA

    Google Scholar 

  • ____ (1995e) Effects ofmicroorganisms on stability of fiber reinforced polymer composites. In: Hui D (Ed) 2nd Intern. Conf. Composite Eng. (pp 279- 280), Univ. of New Orleans, Louisiana, USA

    Google Scholar 

  • Gu, J-D, Thorp T, Crasto A & Mitchell R (1995f) Microbiological degradation of fiber-reinforced polymeric composites. Electrochemical Society Meeting Abstracts 96(1): 143- 144

    Google Scholar 

  • Gu J-D, Ford TE & Mitchell R (1996a) Susceptibility of electronic insulating polyimides to microbial degradation. J. Appl. Polym. Sci. 62: 1029- 1034

    Google Scholar 

  • Gu J-D, Ford T, Thorp K & Mitchell R (1996b) Microbial growth on fiber reinforced composite materials. Internat. Biodeter. Biodegr. 37: 197- 204

    Google Scholar 

  • Gu J-D, Lu C, Thorp K, Crasto A & Mitchell R (1996c) Fungal degradation of fiber-reinforced composite materials. Corrosion/96, Paper No. 275, NACE International, Houston, Texas, USA

    Google Scholar 

  • ____ (1997a) Fungal degradation of fiber-reinforced composite materials. Mat. Perform. 36: 37- 42

    Google Scholar 

  • ____ (1997b) Fiber-reinforced polymeric composites are susceptible to microbial degradation. J. Ind. Microbiol. Biotechnol. 18: 364- 369

    Google Scholar 

  • Gu J-D, Roman M, Esselman T & Mitchell R (1998) The role of microbial biofilms in deterioration of space station candidate materials. Internat. Biodeter. Biodegr. (in press)

  • Jensen, RJ (1987) Polyimides as interlayer dielectrics for high-performance interconnections of integrated circuits. In: Bowden MJ & Turner SR (Eds) Polymers for high technology-electronics and photonics, ACS Symposium Series 346 (pp 465- 483). American Chemical Society, Washington, DC, USA

    Google Scholar 

  • Kawai F (1987) The biochemistry of degradation of polyethers. CRC Crit. Rev. Biotechnol. 6: 273- 307

    Google Scholar 

  • Kendig M & Scully J (1990) Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corros 46: 22- 29

    Google Scholar 

  • Lai JH (1989) Polymers for Electronic Applications, CRC Press, Inc., Boca Ralton, Florida, USA

    Google Scholar 

  • Leyden RN & Basiulis DI (1989) Adhesion and electrical insulation of thin polymeric coatings under saline exposure. Mat. Res. Soc. Symp. Proc. 110: 627- 633

    Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy: emphasis solid materials and systems, John Wiley & Sons, New York, NY, USA

    Google Scholar 

  • Mansfeld F (1995) Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem. 25: 187- 202

    Google Scholar 

  • Mansfeld F & Tsai CH(1991) Determination of coating deterioration with EIS. I. basic relationships. Corrosion 47: 958- 963

    Google Scholar 

  • McCain JW & Mirocha CJ (1994) Screening computer diskette and other magnetic media for susceptibility to fungal colonization. Internat. Biodeter. Biodegr. 33: 255- 268

    Google Scholar 

  • Mitchell R, Gu J-D, Roman M & Soukup S (1996) Hazards to space missions from microbial biofilms. In: Sand W (Ed) DECHEMA Monographs: Biodeterioration and Biodegradation, Vol. 133 (pp 3- 16). VCH, Frankfurt, Germany

    Google Scholar 

  • Mitton B, Ford TE, LaPonite E & Mitchell R (1993) Biodegradation of complex polymeric materials. Corrosion/93, Paper No. 296, NACE International, Houston, Texas, USA

    Google Scholar 

  • Reisch MS (1996) Paints and coatings. Chem. Eng. News 74: 44- 60

    Google Scholar 

  • Scully JR & Hensley ST (1994) Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods. Corrosion 50: 705- 716

    Google Scholar 

  • Seal KJ & Shuttleworth WA (1986) The biodeterioration of polyurethanes by fungi used as standard test organisms for evaluating the susceptibility of plastics. In: Barry S & Houghton DR (Eds), Biodeterioration 6 (pp. 643- 648) CAB International Mycological Institute, Slough, UK

    Google Scholar 

  • Thorp KEG, Crasto AS, Gu J-D & Mitchell R (1994) Biodegradation of composite materials. In: Naguy T (Ed) Proceedings of the Tri-Service Conference on Corrosion (pp 303- 314). U. S. Government Printing Office, Washington DC, USA

    Google Scholar 

  • Titz J, Wagner GH, Spähn H, Ebert M, Jüttner K & Lorenz WJ (1990) Characterization of organic coatings on metal substrates by electrochemical impedance spectroscopy. Corrosion 46: 221- 229

    Google Scholar 

  • Tsai CH & Mansfeld F (1993) Determination of coating deterioration with EIS. II. development of a method for field testing of protective coatings. Corrosion. 49: 726- 737

    Google Scholar 

  • van der Weijde DH, van westing EPM & de Wit JHW (1994) Electrochemical techniques for delamination studies. Corrosion Sci. 36: 643- 652

    Google Scholar 

  • van Westing EPM, Ferrari GM & de Wit JHW (1994a) The determination of coating performance with impedance measurements. II. water uptake of coatings. Corrosion Sci. 36: 957- 977

    Google Scholar 

  • ____ (1994b) The determination of coating performance with impedance measurements. III. in situ determination of loss of adhesion. Corrosion Sci. 36: 979- 994

    Google Scholar 

  • Walter GW (1986) A review of impedance plot methods used for corrosion performance analysis of painted metals. Corrosion Sci. 26: 681- 703

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, JD., Mitton, D., Ford, T. et al. Microbial degradation of polymeric coatings measured by electrochemical impedance spectroscopy. Biodegradation 9, 39–45 (1998). https://doi.org/10.1023/A:1008252301377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008252301377

Navigation