Skip to main content
Log in

Monte Carlo Study of Structural and Thermodynamic Properties of Liquid Chloroform Using a Five Site Model

  • Published:
Molecular Engineering

Abstract

A five site potential model combining Lennard–Jones plus Coulomb potential functions has been developed for chloroform molecule. The partial charges needed for Coulombic interactions were derived using the chelpg procedure implemented in the gaussian 92 program. These calculations were performed at the MP2 level with MC-311G* basis set for Cl and 6-311G** for C and H atoms. The parameters for the Lennard–Jones potentials were optimized to reproduce experimental values for the density and enthalpy of vaporization of the pure liquid at 298 K and 1 atm. The statistical mechanics calculations were performed with the Monte Carlo method in the isothermic and isobaric (NpT) ensemble. Besides the values obtained for density, ρ, and molar enthalpy of vaporization at constant pressure, Δ HV, for liquid chloroform, results for molar volume, Vm, molar heat capacity, Cp, isobaric thermal expansivity, αp, and isothermal compressibility, κT, for this pure liquid are also in very good agreement with experimental observations. Size effects on the values of thermodynamic properties were investigated. The potential model was also tested by computing the free energy for solvating one chloroform molecule into its own liquid at 298 K using a statistical perturbation approach. The result obtained compares well with the experimental value. Site–site pair correlation functions were calculated and are in good accordance with theoretical results available in the literature. Dipole–dipole correlation functions for the present five site model were also calculated at different carbon–carbon distances. These correlations were compared to those obtained using the four site model reported in the literature. An investigation of the solvent dependence of the relative free energy for cis/trans conversion of a hypothetical solute in TIP4P water and chloroform was accomplished. The results show strong interaction of water and chloroform molecules with the gauche conformer. The value obtained for the free energy barrier for cis/trans rotation in TIP4P water is higher than that for chloroform. This result is in agreement with the continuous theory for solvation as the conformer with higher dipole moment is more favoured by the solvent with higher dieletric constant. The results also show an increase in entropy as the solute goes from the cis to the trans geometry and this result is more appreciable in the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hansen and I. R. McDonald: Theory of Simple Liquids. Academic Press, London (1986).

    Google Scholar 

  2. J. P. Allen and D. J. Tildesley: Computer Simulation of Liquids. Clarendon, Oxford (1987).

    Google Scholar 

  3. J. J. C. Teixeira-Dias (ed.): Molecular Liquids: New Perspectives in Physics and Chemistry. Kluwer Acad. Pub., Dordrecht (1992).

    Google Scholar 

  4. M. W. Evans (ed.): Dynamical Processes in Condensed Matter. Wiley, New York (1985).

    Google Scholar 

  5. W. L. Jorgensen, J. M. Briggs, and M. L. Contreras: J. Phys. Chem. 94, 1683 (1990).

    Article  CAS  Google Scholar 

  6. H. Kovaks, J. Kowalewski, and A. Laaksonen: J. Phys. Chem. 94, 7378 (1990).

    Article  Google Scholar 

  7. M W. Evans: J. Mol. Liquids 25, 211 (1983).

    Article  CAS  Google Scholar 

  8. W. Dietz and K. Heinzinger: Ber. Bunsenges. Phys. Chem. 89, 968 (1985).

    CAS  Google Scholar 

  9. H. J. Böhm and R. Ahlrichs: Mol. Phys. 54, 1261 (1985).

    Article  Google Scholar 

  10. M. Jen and D. R. Lide Jr.: J. Chem Phys. 36, 2525 (1962).

    Article  CAS  Google Scholar 

  11. H. Bertagnolli, D. O. Leicht, and M. D. Zeidler: Mol. Phys. 35, 193 (1978).

    Article  CAS  Google Scholar 

  12. H. Bertagnolli, D. O. Leicht, M.D. Zeidler, and P. Chieux: Mol. Phys. 35, 199 (1978).

    Article  CAS  Google Scholar 

  13. L. C. G. Freitas and J. M. M. Cordeiro: J. Mol. Struct. (Theochem) 335, 189 (1995).

    Article  Google Scholar 

  14. C. M. Breneman and K. B. Wiberg: J. Comp. Chem. 11, 361 (1990).

    Article  CAS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Repogle, R. Gomperts, J. L. Andres, K. Ragharachari, and J. S. Bink: GAUSSIAN 92, Revision C, Gaussian, Inc., Pittsburg PA (1992).

    Google Scholar 

  16. A. D. McLean and G. S. Chandler: J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  17. A. L. McClellan: Tables of Experimental Dipole Moments. Freeman, London (1963).

    Google Scholar 

  18. B. H. Besler, K.M. Merz Jr., and P. A. Kollman: J. Comp. Chem. 11, 431 (1990).

    Article  CAS  Google Scholar 

  19. K. M. Merz Jr.: J. Comp. Chem. 13, 749 (1992).

    Article  CAS  Google Scholar 

  20. H. A. Carlson, T. B. Nguyen, M. Orozco, and W. L. Jorgensen: J. Comp. Chem. 14, 1240 (1993).

    Article  CAS  Google Scholar 

  21. K B. Wiberg and P. R. Rablen: J. Comp. Chem. 14, 1504 (1993).

    Article  CAS  Google Scholar 

  22. D. Chandler: Ann. Rev. Phys. Chem. 29, 441 (1978).

    Article  CAS  Google Scholar 

  23. C. S. Hsu and D. Chandler: Mol. Phys. 37, 299 (1979).

    Article  CAS  Google Scholar 

  24. C. F. Jumper, M. T. Emerson, and B. B. Howard: J. Chem. Phys. 35, 1911 (1961).

    Article  CAS  Google Scholar 

  25. J. A. Riddick and W. B. Bunger: Organic Solvents. Wiley, New York (1970).

    Google Scholar 

  26. V. Majer, L. Šváb, and V. Svoboda: J. Chem. Thermodynamics 12, 843 (1980).

    Article  CAS  Google Scholar 

  27. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller: J. Chem. Phys. 21, 1087 (1953).

    Article  CAS  Google Scholar 

  28. L. C. G. Freitas: DIADORIM Program Version 2.0, Universidade Federal de São Carlos, Departamento de Química (1995).

  29. L. C. G. Freitas: J. Mol. Struct. (Theochem) 282, 151 (1993).

    Article  Google Scholar 

  30. R. W. Zwanzig: J. Chem. Phys. 22, 1420 (1954).

    Article  CAS  Google Scholar 

  31. W. F. V. Gunsteren and P. K. Weiner (eds.): Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, ESCOM, Leiden (1989).

    Google Scholar 

  32. D. L. Beveridge and F. M. DiCapua: Ann. Rev. Biophys. Chem. 18, 431 (1989).

    Article  CAS  Google Scholar 

  33. J. C. Owicki and H. A. Scheraga: Chem. Phys. Lett. 47, 600 (1977).

    Article  CAS  Google Scholar 

  34. H. Bertagnolli: Ber. Bunsenges. Phys. Chem. 85, 644 (1981).

    CAS  Google Scholar 

  35. H. Bertagnolli, D. O. Leicht, M. D. Zeidler, and P. Chieux: Mol. Phys. 36, 1769 (1978).

    Article  CAS  Google Scholar 

  36. H. Bertagnolli and P. Chieux: Ber. Bunsenges. Phys. Chem. 84, 1225 (1980).

    CAS  Google Scholar 

  37. A. Ben-Naim and Y. Marcus: J. Chem. Phys. 81, 2016 (1984).

    Article  CAS  Google Scholar 

  38. W. L. Jorgensen, J. Chandrasenkhar, J. D. Madura, R.W. Impey, and M. L. Klein: J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  39. W. L. Jorgensen, J. D. Madura, and C. J. Swenson: J. Am. Chem. Soc. 106, 6638 (1984).

    Article  CAS  Google Scholar 

  40. T. A. Andrea, W. C. Swope, and H. C. Andersen: J. Chem. Phys. 4576 (1983).

  41. R. J. Abraham and E. Bretschneider: in Internal Rotation in Molecules, W. J. Orville-Thomas (ed.), Ch. 13. Wiley, New York (1974).

    Google Scholar 

  42. Y. Marcus: Ion Solvation. Wiley, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlette, V.E., Garbujo, F.L.L. & Freitas, L.C.G. Monte Carlo Study of Structural and Thermodynamic Properties of Liquid Chloroform Using a Five Site Model. Molecular Engineering 7, 439–455 (1997). https://doi.org/10.1023/A:1008232630306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008232630306

Navigation