Skip to main content
Log in

Ab initio Potential Energy Surface for Ne–Li2 in Its Ground Electronic State

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

We present the results of a detailed study of the first accurate 3D ground state interaction potential energy surface (PES) of the Ne–Li2 system by quantum calculations using the coupled-cluster singles and doubles excitation approach with perturbative treatment of triple excitations [CCSD(T)]. The calculations were carried out for the frozen molecular equilibrium geometries and for an extensive range of the remaining two Jacobi coordinates, R and θ, for which a total of about 1976 points is generated for the surface. Mixed basis sets, aug-cc-pVTZ for the Ne atom and cc-pCVTZ for the Li atom, with an additional (3s3p2d2f1g) set of midbond functions are used. The ab initio points on the PES are fitted to a 96-parameter algebraic form with an average absolute error of 0.00000255% and a maximum error less than 0.00888%. The experimental results are compared with our ab initio potential surface calculations. Our PES gives more accurate results along with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. A. Otoniel, Th. Stoecklin, and Ph. Halvick, J. Chem. Phys. 140, 084316 (2014).

    Article  CAS  Google Scholar 

  2. T. Yuan, M. L. Yang, and H. Zhu, Computat. Theor. Chem. 1070, 88 (2015).

    Article  CAS  Google Scholar 

  3. S. Lepp, P. C. Stancil, and A. Dalgarno, J. Phys. B: At. Mol. Opt. Phys. 35, R57 (2002).

    Article  CAS  Google Scholar 

  4. D. H. Ross, D. Y. Sachin, K. Sabre, and S. F. Joseph, J. Chem. Phys. 144, 204121 (2016).

    Article  CAS  Google Scholar 

  5. E. Bodo, F. A. Gianturco, and R. Martinazzo, Phys. Rep. 384, 85 (2003).

    Article  CAS  Google Scholar 

  6. M. H. Alexander, D. E. Manolopoulos, and H. J. Werner, J. Chem. Phys. 95, 6524 (1991).

    Article  CAS  Google Scholar 

  7. S. Brian, D. P. Magil, and E. P. David, J. Phys. Chem. A 104, 10566 (2000).

    Google Scholar 

  8. D. Zanuttini, J. Douady, E. Jacquet, E. Giglio, and B. Gervais, J. Chem. Phys. 134, 044308 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. M. A. Rosenberry, R. Marhatta, and B. Stewart, Chem. Phys. Lett. 523, 15 (2012).

    Article  CAS  Google Scholar 

  10. J. Wang, B. W. Yang, and X. D. Yang, J. Sichuan Univ. (Nat. Sci. Ed.) 43, 832 (2006).

  11. K. A. Peterson and G. C. McBane, J. Chem. Phys. 123, 283 (2005).

    Google Scholar 

  12. E. Y. Feng, Z. Q. Wang, M. Y. Gong, and Z. F. Cui, J. Chem. Phys. 127, 284 (2007).

    Google Scholar 

  13. J. V. Lill, G. A. Parker, and J. C. Light, Chem. Phys. Lett. 89, 483 (1982).

    Article  CAS  Google Scholar 

  14. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

    Article  CAS  Google Scholar 

  15. E. M. Goldfield and S. K. Gray, Comput. Phys. Commun. 98, 1 (1998).

    Article  Google Scholar 

  16. H.-J. Werner and P. J. Knowles, MOLPRO, a Package of ab initio Programs. http://www.molpro.net.

  17. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  18. W. C. Kenneth and D. Power, J. Chem. Phys. 110, 860 (1999).

    Article  Google Scholar 

  19. K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).

    Article  CAS  Google Scholar 

  20. G. Ihm, M. W. Cole, and F. Toigo, Phys. Rev. A 42, 5244 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. M. Yasuhiko, I. Haruki, and M. Naohiko, J. Chem. Phys. 122, 154302 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author Wang thanks his parents for their encouragements. This work is supported by the Key projects of science research in University of Anhui Province (grant nos. KJ2018A0482, KJ2018A0476), the National College Students’ innovative training program (grant no. 201610383035), the College Students’ innovative training program (grant no. 2017tlxydxs082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong De Zhi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang Yue, Gan, G., De Zhi, D. et al. Ab initio Potential Energy Surface for Ne–Li2 in Its Ground Electronic State. Russ. J. Phys. Chem. 93, 488–493 (2019). https://doi.org/10.1134/S0036024419030233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419030233

Keyword:

Navigation