Skip to main content
Log in

Physical Image vs. Structure Relation. Part 3 [1]. Basic Properties and Protonation Mechanism of Some Tetraaza Macrocyclic Ligands

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The protonation constants, log K, for 1,4,7,11-tetraazacyclotetradecane (isocyclam, 2), 1-(2-aminoethyl)-1,4,8,11-tetraazacyclotetradecane (scorpiand, 3), 5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane (Me2cyclam, 4) and 5,5,7,12,14,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane (Me6cyclam, 5) were determined pH-metrically. Attempts of correlation of the calculated enthalpy of protonation in the gas phase (AM1 method) with experimental values of the protonation constants for ligands 1, 2, 4–7 were done 1,4,8,11-tetraazacyclotetradecane, cyclam, 1; 1,4,7,10-tetraazacyclotetradecane, cyclen, 6; 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, (N-Me)4cyclam, 7. Extensive NMR pH-titrations, i.e., determination of pH vs. chemical shifts (1H and/or 13C) plots, (δX = f(pH), allowed to suggest the most likely protonation schemes of all nitrogen atoms in the cyclic polyamines 1–3. The possibility of the formation-breaking of the intramolecular hydrogen bonds, as well as the change of conformation of these polybasic macrocycles during protonation-deprotonation steps, has been considered on the basis of the supplementary theoretical calculations (MMX/STO-3G study).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For Parts 1 and 2, see refs. 26 and 27, respectively.

  2. R. Bhula, P. Osvath, and D. C. Weatherburn: Coord. Chem. Rev. 91, 89 (1988).

    Google Scholar 

  3. P. V. Bernhardt and G. A. Lawrance: Coord. Chem. Rev. 104, 297 (1990).

    Google Scholar 

  4. A. E. Martell and R. D. Hancock: Metal Complexes in Aqueous Solutions, Plenum Press, New York (1996).

    Google Scholar 

  5. K. B. Yatsimirskii: Zh. Neorg. Khim. 36, 2010 (1991).

    Google Scholar 

  6. L. Sabatini and L. Fabbrizzi: Inorg. Chem. 18, 438 (1979).

    Google Scholar 

  7. P. S. Pallavicini, A. Perotti, A. Poggi, B. Seghi, and L. Fabbrizzi: J. Am. Chem. Soc. 109, 5139 (1987).

    Google Scholar 

  8. R. J. Motekaitis and A. E. Martell: Can. J. Chem. 60, 168 (1982).

    Google Scholar 

  9. A. Izquierdo and J. L. Beltran: Anal. Chim. Acta 181, 87 (1986).

    Google Scholar 

  10. HyperChem® for Windows, Release 4.5, Publication HC45-00-01-00, May 1995, Hypercube, Inc., Waterloo, Ontario, Canada N2L 3X2.

  11. J. J. P. Stewart: J. Computer-Aided Mol. Design 4, 1 (1990).

    Google Scholar 

  12. PCMODEL, Molecular Modeling Software for the IBM PC/XT/AT and Compatibles, Serena Software, Bloomington, IN 47402-3076, USA.

  13. M. Saunders: J. Am. Chem. Soc. 109, 3150 (1987).

    Google Scholar 

  14. A. K. Covington, M. Paabo, R. A. Robinson, and R. G. Bates: Anal. Chem. 40, 700 (1968), and references therein.

    Google Scholar 

  15. J. Costa and R. Delgado: Inorg. Chem. 32, 5257 (1993), and refs. therein.

    Google Scholar 

  16. A. Bianchi, B. Escuder, E. García-Espana, S. V. Luis, V. Marcelino, J. F. Miravet, and J. A. Ramírez: J. Chem. Soc., Perkin Trans. 2 1253 (1994).

    Google Scholar 

  17. A. Grzejdziak: Monatsh. Chem. 125, 107 (1994).

    Google Scholar 

  18. A. P. Leugger, L. Hertli, and T. A. Kaden: Helv. Chim. Acta 61, 2296 (1978).

    Google Scholar 

  19. R. B. Nazarski, D. Sroczyński, P. Urbaniak, J. Dziegieć, and A. Grzejdziak: 36th IUPAC Congress, Geneva, August 17–22, 1997, poster SB-I16; Chimia 51, 432 (1997).

    Google Scholar 

  20. M. Kodama and E. Kimura: J. Chem. Soc., Dalton Trans. 327 (1980).

  21. The detailed structural studies, especially concerning the NMR resonance assignments for the complex scorpiand systems, will be published soon.

  22. In certain pH intervals signal assignments for objects 2 and 3 are tentative due to crossover of the titration curves, which does not influence the proposed protonation schemes.

  23. R. B. Nazarski and D. Sroczyński: Symposium on Application of Magnetic Resonance in Chemistry and Related Areas, Warsaw, June 24–26, 1998, poster P32.

  24. M. Micheloni, P. Paoletti, and A. Vacca: J. Chem. Soc., Perkin Trans. 2 945 (1978).

    Google Scholar 

  25. H.-O. Kalinowski, S. Berger, and S. Braun: Carbon-13 NMR Spectroscopy, John Wiley, Chichester, 1988, pp. 222–226.

    Google Scholar 

  26. M. Cygler, K. Dobrynin, M. J. Grabowski, R. B. Nazarski, and R. Skowroński: J. Chem. Soc., Perkin Trans. 2 1495 (1985).

    Google Scholar 

  27. R. B. Nazarski and R. Skowroński: J. Chem. Soc., Perkin Trans. 1 1603 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarski, R.B. Physical Image vs. Structure Relation. Part 3 [1]. Basic Properties and Protonation Mechanism of Some Tetraaza Macrocyclic Ligands. Journal of Inclusion Phenomena 35, 251–260 (1999). https://doi.org/10.1023/A:1008199016005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008199016005

Navigation