Skip to main content
Log in

Structural-topological preferences and protonation sequence of aliphatic polyamines: a theoretical case study of tetramine trien

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A large set of lowest and medium energy conformers of aliphatic tetramine trien was used to uncover structural-topological preferences of poliamines. Numerous common structural features among HL and H 2 L tautomers were identified, e.g., H-atoms of protonated functional groups are always involved in intramolecular NH•••N interactions and they result in as large and as many as possible rings in lowest energy conformers. Largest, 11-membered, molecular rings stabilize a molecule most and they appeared to be strain free whereas 5-memebred intramolecular rings were most strained (all formed due to NH•••N interactions). The CH•••HC interactions with QTAIM-defined atomic interaction lines were also found but, surprisingly, mainly in the lowest energy conformers of HL tautomers. According to the non-covalent interaction-based (NCI) analysis, 5-memebered rings formed by CH•••HC interactions are not strained and, in general, 3D NCI isosurfaces mimic those obtained for weaker NH•••N interactions. Also, 3D NCI isosurfaces found for NH•••N and CH•••HC interactions, regardless whether linked or not by an atomic interaction line, appeared to be indistinguishable. Using lowest energy conformers, theoretically predicted mixture of primary (HL p ) and secondary (HL s ) forms of trien was found to be in accord with the literature reports; using linear conformers resulted in predicting HL s as the only tautomer formed. In contrast to HF, the overall performance of B3LYP was found satisfactory for the purpose of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agostinelli E, Marques MPM, Calheiros R, Gil FPSC, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  CAS  Google Scholar 

  2. Bachrach U (2010) The early history of polyamine research. Plant Phys Biochem 48:490–495

    Article  CAS  Google Scholar 

  3. Batista de Carvalho LAE, Marques MPM, Tomkinson J (2006) Transverse acoustic modes of biogenic and α, ω-polyamines: a study by inelastic neutron scattering and Raman spectroscopies coupled to DFT calculations. J Phys Chem A 110:12947–12954

    Article  CAS  Google Scholar 

  4. Paoletti P, Ciampolini M, Vacca A (1963) Thermochemical studies VII. Heats and entropies of stepwise neutralization of piperazine and trien. J Phys Chem 67:1065–1067

    Article  CAS  Google Scholar 

  5. Hague DN, Moreton AD (1994) Protonation sequence of linear aliphatic polyamines by 13C NMR spectroscopy. J Chem Soc Perkin Trans 2:265–270

    Article  Google Scholar 

  6. Dagnall SP, Hague DN, McAdam ME (1984) 13C nuclear magnetic resonance study of the protonation sequence of some linear aliphatic polyamines. J Chem Soc Perkin Trans 2:1111–1114

    Article  Google Scholar 

  7. Delfini M, Segre AL, Conti F, Barbucci R, Barone V, Ferruti P (1980) On the mechanism of protonation of triamines. J Chem Soc Perkin Trans 2:900–903

    Article  Google Scholar 

  8. Borkovec M, Cakara D, Koper GJM (2012) Resolution of microscopic protonation enthalpies of polyprotic molecules by means of cluster expansions. J Phys Chem B 116:4300–4309

    Article  CAS  Google Scholar 

  9. Hedwig GR, Powell HKJ (1973) Thermodynamics of complex formation of 1,5,8,12-Tetra-azadodecane with copper(II) iIons and protons in aqueous solution. J Chem Soc, Dalton Trans, pp 793–797, doi: 10.1039/DT9730000793

  10. Barbucci R, Fabbrizzi L, Paoletti P (1972) Thermodynamics of complex formation of aliphatic linear tetra-amines. ΔH and ΔS for the reactions of 1,5,9,13- tetra-azatridecane with protons and some bivalent transition-metal ions. J Chem Soc, Dalton Trans, pp 745–749, doi: 10.1039/DT9720000745

  11. Kimberly MM, Goldstein JH (1981) Determination of pKa values and total proton distribution pattern of spermidine by carbon-13 nuclear magnetic resonance titrations. Anal Chem 53:789–793

    Article  CAS  Google Scholar 

  12. Cukrowski I, Matta CF (2011) Protonation sequence of linear aliphatic polyamines from intramolecular atomic energies and charges. Comput Theoret Chem 966:213–219

    Article  CAS  Google Scholar 

  13. Marques MPM, Batista de Carvalho LAE (2007) Vibrational spectroscopy studies on linear polyamines. Biochem Soc Trans 35:374–380

    Article  CAS  Google Scholar 

  14. Govender KK, Cukrowski I (2009) Density functional theory in prediction of four stepwise protonation constants for nitrilotripropanoic acid (NTPA). J Phys Chem A 113:3639–3647

    Article  CAS  Google Scholar 

  15. Govender KK, Cukrowski I (2010) Density functional theory and isodesmic reaction based prediction of four stepwise protonation constants, as log KH(n), for nitrilotriacetic acid. The importance of a kind and protonated form of a reference molecule used. J Phys Chem A 114:1868–1878

    Article  CAS  Google Scholar 

  16. Reyzer ML, Brodbelt JS (1998) Gas-phase basicities of polyamines. J Am Soc Mass Spectrom 9:1043–1048

    Article  CAS  Google Scholar 

  17. Ilioudis CA, Hancock KSB, Georganopoulou DG, Steed JW (2000) Insights into supramolecular design from analysis of halide coordination geometry in a protonated polyamine matrix. New J Chem 24:787–798

    Article  CAS  Google Scholar 

  18. Batista de Carvalho LAE, Laurenc LE, Marques MPM (1999) Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy. J Mol Struc Theochem 482–483:639–646

    Article  Google Scholar 

  19. Carballeira L, Mosquera RA, Rios MA (1988) Conformational analysis of polyfunctional aminic compounds by molecular mechanics: part 1. Methanediamines and 1,3-diazacyclohexanes. J Mol Struc Theochem 176:89–105

    Article  CAS  Google Scholar 

  20. Carballeira L, Mosquera RA, Rios MA, Tovar CA (1988) Conformational analysis of polyfunctional amino compounds by molecular mechanics. : part II. 1,2-ethanediamine, 1,3-propanediamine and 1,4-diazacyclohexanes. J Mol Struc Theochem 193:263–277

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D.1. Gaussian, Inc, Wallingford

    Google Scholar 

  22. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distribution of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  23. Miertusˇ S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  24. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458

    Article  CAS  Google Scholar 

  25. Wilke JJ, Lind MC, Schaefer HF, Csaszar AG, Allen WD (2009) Conformers of gaseous cysteine. J Chem Theory Comput 5:1511–1523

    Article  CAS  Google Scholar 

  26. Sanchez-Lozano M, Cabaleiro-Lago EM, Hermida-Ramon JM, Estevez CM (2013) A computational study of the protonation of simple amines in water clusters. Phys Chem Chem Phys 15:18204–18216

    Article  CAS  Google Scholar 

  27. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  28. Keith TA (2013) AIMALL (Version 13.11.04), TK Gristmill Software, Overland Parks, KS, aim.tkgristmill.com

  29. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan D, Yang WJ (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  Google Scholar 

  30. Spartan’10, version 1.1.0 (2010) Wavefunction, Inc., 18401 Von Karmen Ave., Suite 370, Irvine, CA92612, USA

  31. Arabieh M, Karimi-Jafari MH, Ghannadi-Maragheh M (2013) Low-energy conformers of pamidronate and their intramolecular hydrogen bonds: a DFT and QTAIM study. J Mol Model 19:427–438

    Article  CAS  Google Scholar 

  32. Gronert S, O’Hair RAJ (1995) Ab initio studies of amino acid conformations. 1. The conformers of alanine, serine and cysteine. J Am Chem Soc 117:2071–2081

    Article  CAS  Google Scholar 

  33. Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Bond paths as privileged exchange channels. Chem Eur J 13:9362–9371

    Article  Google Scholar 

  34. Cukrowski I, de Lange JH, Adeyinka AS, Mangondo P (2015) Evaluating common QTAIM and NCI interpretations of the electron density concentration through IQA interaction energies and 1D cross-sections of the electron and deformation density distributions. Comput Theoret Chem 1053:60–76

    Article  CAS  Google Scholar 

  35. Haaland A, Shorokhov DJ, Tverdova NV (2004) Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? Chem Eur J 10:4416–4421

    Article  CAS  Google Scholar 

  36. Jablonski MJ (2012) Energetic and geometrical evidence of nonbonding character of some intramolecular halogen∙∙∙oxygen and other Y∙∙∙Y interactions. J Phys Chem A 116:3753–3764

    Article  CAS  Google Scholar 

  37. Dem’yanov P, Polestshuk P (2012) A bond path and an attractive ehrenfest force do not necessarily indicate bonding interactions: case study on M2X2 (M = Li, Na, K; X = H, OH, F, Cl). Chem Eur J 18:4982–4993

    Article  Google Scholar 

  38. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WJ (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  39. Chaudret R, de Courcy B, Contreras-García J, Gloaguen E, Zehnacker-Rentien A, Mons M, Piquemal JP (2014) Unraveling non-covalent interactions within flexible biomolecules: from electron density topology to gas phase spectroscopy. Phys Chem Chem Phys 16:9876–9891

    Article  CAS  Google Scholar 

  40. Contreras-García J, Yang WJ (2011) Analysis of hydrogen-bond interaction potentials from the electron density: integration of non-covalent interaction regions. J Phys Chem A 115:12983–12990

    Article  Google Scholar 

  41. Albelda MT, Frías JC, García-España E (2007) Proton transfer reactions. Encyclop Supramolecul Chem 1(1):1–37

    Google Scholar 

  42. Bencini A, Bianchi A, Garcia-España E, Micheloni M, Ramirez JA (1999) Proton coordination by polyamine compounds in aqueous solution. Coord Chem Rev 188:97–156

    Article  CAS  Google Scholar 

  43. Frassineti C, Ghelli S, Gans P, Sabatini A, Moruzzi MS, Vacca A (1995) Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. Anal Biochem 231:374–382

    Article  CAS  Google Scholar 

  44. Weisell J, Vepsäläinen J, Peräkylä M (2013) Tautomeric populations of the charged species of 1,12-diamino-3,6,9-triazadodecane (SpmTrien) studied with computer simulations and cluster expansions. J Phys Org Chem 26:360–366

    Article  CAS  Google Scholar 

  45. Bondi A (1964) van der Waals volumes and Radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  46. Rowland RS, Taylor R (1996) Intermolecular non bonded contact distances in organic crystal structures: comparison with distances expected from van der Waals Radii. J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

  47. Klein RA (2006) Modified van der Waals atomic radii for hydrogen bonding based on electron density topology. Chem Phys Lett 425:128–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 87777) and the University of Pretoria.

Compliance with ethical standards

This work fully complies with Ethical Standards. An informed consent was reached to publish this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacy Cukrowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyinka, A.S., Cukrowski, I. Structural-topological preferences and protonation sequence of aliphatic polyamines: a theoretical case study of tetramine trien . J Mol Model 21, 162 (2015). https://doi.org/10.1007/s00894-015-2709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2709-y

Keywords

Navigation