Skip to main content
Log in

An assessment of the AFLP method for investigating population structure in the red alga Chondrus crispus Stackhouse (Gigartinales, Florideophyceae)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The appropriateness of the Amplified Fragment Length Polymorphism (AFLP) technique for investigating Chondrus crispus Stackhouse populations in the Maritime Provinces of Canada was assessed. The AFLP procedure was first subjected to reproducibility testing and three shortcomings were noted: 1) failure to reproduce band intensity between replicate runs for the same individual and primer pair; 2) failure of some bands to replicate; 3) lack of reproducibility for complete replicate runs for some individuals and primer pairs. In the last-mentioned case, the lack of reproducibility resulted in characteristic electropherograms indicative of weak reactions. These weak runs can be attributed to poor restriction digest/ligation reactions and/or substandard PCR, these failures ultimately resulting from low and inconsistent DNA quality. We recommend that reproducibility testing should be completed routinely in studies using the AFLP technique. In the current work, only fragments and individuals that gave reproducible results were used in subsequent analyses. The AFLP method resulted in highly variable markers within and between the populations of C. crispus included in this investigation, which prevented successful resolution of population structure. This situation could result from a lack of suitability for AFLP markers in population genetic studies, and/or too extensive genetic variation for C. crispus populations to be discerned by the AFLP technique. These two possible explanations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheney DP, Babbel GR (1978) Biosystematic studies of the red algal genus Eucheuma. I. Electrophoretic variation among Florida populations. Mar. Biol. 47: 251-264.

    Article  Google Scholar 

  • Cheney DP, Mathieson AC (1979) Population differentiation in the seaweed Chondrus crispus: preliminary results. Isozyme Bull. 12: 57.

    Google Scholar 

  • Chopin T, Bird CJ, Murphy CA, Osborne JA, Patwary MU, Floc'h JY (1996) A molecular investigation of polymorphism in the North Atlantic red alga Chondrus crispus (Gigartinales). Phycol. Res. 44: 69-80.

    CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26: 297-302.

    Article  Google Scholar 

  • Donaldson SL, Chopin T, Saunders GW (1998) Amplified Fragment Length Polymorphism (AFLP) as a source of genetic markers for red algae. J. appl. Phycol. 10: 365-370.

    Article  CAS  Google Scholar 

  • Dowling TE, Moritz C, Palmer JD (1990) Nucleic Acids II: Restriction Site Analysis: 250-317. In Hillis DM, Moritz C (eds.), Molecular Systematics. Sinauer Associates Ltd., Sunderland, 588 pp.

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-391.

    Article  Google Scholar 

  • Folkertsma RT, Rouppe van der Voort JNAM, de Groot KE, van Zandvoort PM, Schots A, Gommers FJ, Helder J, Bakker J (1996) Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol. Plant-Micr. Int. 9: 47-54.

    CAS  Google Scholar 

  • Goff LJ, Moon DA, Nyvall P, Stache B, Mangin K, Zuccarello G (1996) The evolution of parasitism in the red algae: molecular comparisons of adelphoparasites and their hosts. J. Phycol. 32: 297-312.

    Article  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182-192.

    Article  Google Scholar 

  • Hongtrakul V, Huestis GM, Knapp SJ (1997) Amplified fragment length polymorphisms as a tool for DNA fingerprinting sun-flower germplasm: genetic diversity among oilseed inbred lines. Theor. appl. Genet. 95: 400-407.

    Article  CAS  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vasquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390.

    Article  CAS  Google Scholar 

  • Kardolus JP, van Eck HJ, van den Berg RG (1998) The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Pl. Syst. Evol. 210: 87-103.

    Article  Google Scholar 

  • Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones M, Kuske CR, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by Amplified Fragment Length Polymorphism markers. J. Bact. 179: 818-824.

    PubMed  CAS  Google Scholar 

  • Kessler LG, Avise JC (1985) A comparative description of mitochondrial differentiation in selected avian and other vertebrate genera. Mol. Biol. Evol. 2: 109-126.

    PubMed  CAS  Google Scholar 

  • Koch G, Jung C (1997) Phylogenetic relationships of industrial chicory varieties revealed by RAPDs and AFLPs. Agronomie 17: 323-333.

    Google Scholar 

  • Lin J-J, Kuo J, Ma J (1996) A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucl. Acids Res. 24: 3649-3650.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Mizukami Y, Kito H, Kunimoto M, Kobayashi M (1998) Effect of DNA preparation from laver (Porphyra yezoensis) thalli on reproducibility of RAPD (Random Amplified Polymorphic DNA) patterns. J. appl. Phycol. 10: 23-29.

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. USA 76: 5269-5273.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1993) NTSYS-pc version 1.8. Numerical Taxonomy and Multivariate Analysis System. Exeter Software, New York.

    Google Scholar 

  • Rosendahl S, Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol. Ecol. 6: 821-829.

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    PubMed  CAS  Google Scholar 

  • Saunders GW (1993) Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. J. Phycol. 29: 251-254.

    Article  CAS  Google Scholar 

  • Swofford DL (1999) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol. Ecol. 5: 735-745.

    PubMed  CAS  Google Scholar 

  • Upholt WB (1977) Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucl. Acids Res. 4: 1257-1265.

    PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414.

    PubMed  CAS  Google Scholar 

  • Vos P, Kuiper M (1997) AFLP analysis: 115-131. In Caetano-Anollés G, Gressholf PM (eds.), DNA markers: Protocols, applications and overviews. Wiley-VCH, New York, 364 pp.

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213-7218.

    PubMed  CAS  Google Scholar 

  • Winfield MO, Arnold GM, Cooper F, Le Ray M, White J, Karp A, Edwards KJ (1998) A study of genetic diversity inPopulus nigra subsp. betulifolia in the Upper Severn area of the UK using AFLP markers. Mol. Ecol. 7: 3-10.

    Article  CAS  Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application No.: 92402629.7. Publication Number EP 0534858 A1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, S.L., Chopin, T. & Saunders, G.W. An assessment of the AFLP method for investigating population structure in the red alga Chondrus crispus Stackhouse (Gigartinales, Florideophyceae). Journal of Applied Phycology 12, 25–35 (2000). https://doi.org/10.1023/A:1008178309493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008178309493

Navigation