Skip to main content
Log in

Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Changes in the in vivo chlorophyll fluorescencequenching, photosynthesis and pigment composition werefollowed in the green alga Chlorococcum sp.during exposure of the culture to nitrogen deficiencyand salinity stress with the aims to study theinterrelations between changes in physiological andphotochemical parameters and xanthophyll-cyclepigments content during adaptation to stress, and toevaluate the capacity of this green alga to producesecondary carotenoids in tubular photobioreactors.Exposure of Chlorococcum to nitrogendeficiency, 0.2 M NaCl and high irradiance outdoorscaused a strong depression of the photosyntheticactivity and of photochemical quantum yield ofPSII (Fv/Fm). These changes wereaccompanied by an increase of the non-photochemicalquenching coefficient (NPQ), of the amount ofxanthophyll-cycle pigments and of thecarotenoid/chlorophyll ratio. As a result of exposureto stress conditions, cell division completelystopped, although an increase in the biomass dryweight could be detected due to an increase in thecell size. These processes were followed, with acertain delay (15–20 h), by massive appearance ofsecondary carotenoids that reached the maximum (about50% total carotenoids) after 2–3 days of cultivation.The results show that despite of the lower carotenoidcontent (2 mg g-1 dry wt) as compared with Haematococcus, Chlorococcum can be apotentially interesting strain for secondarycarotenoid production because of its higher growthrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bidigare RG, Ondrusek ME, Kennicutt II MC, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29: 427-434.

    Google Scholar 

  • Bilger W, Björkman O (1990) Role of xanthophyll in photoprotection elucidated by measurement of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25: 173-185.

    Google Scholar 

  • Björkman O (1987) Low-temperature chlorophyll fluorescence in leaves and its reaction to photon yield of photosynthesis in photoinhibition. In Kyle JD, Osmond CB, Arntzen CJ (eds), Photoinhibition, Elsevier, Amsterdam, pp. 123-144.

    Google Scholar 

  • Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In Schultze ED, Caldwell M (eds), Ecological Studies, Vol. 100, Springer Verlag, New York, pp. 17-47.

    Google Scholar 

  • Bocci F, Torzillo G, Vincenzini M, Materassi R (1987) Growth physiology of Spirulina platensis in tubular photobioreactor under sunlight. In Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology, Elsevier Applied Sciences Publishers, London, pp. 219-228.

    Google Scholar 

  • Borowitzka MA, Huisman JM, Osborne A (1991) Cultures of the astaxanthin producing green alga Haematococcus pluvialis. 1. Effect of nutrients on growth and cell type. J. appl. Phycol. 3: 295-304.

    Google Scholar 

  • Boussiba S, Lu F, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082.

    Google Scholar 

  • Boussiba S, Lu F, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol. 213: 386-391.

    Google Scholar 

  • Brown TE, Richardson FL, Vaughn ML (1967) Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6: 167-184.

    Google Scholar 

  • Burnett JH (1976) Function of carotenoids other than in photosynthesis. In Goodwin TW (ed.), Chemistry and Biochemistry of Plant Pigments, Vol. 1, Academic Press, London, pp. 655-680.

    Google Scholar 

  • Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth. Res. 56: 277-289.

    Google Scholar 

  • Chaumont D, Thepenier C (1995) Carotenoid content in growing cells of Haematococcus pluvialis during sunlight cycle. J. appl. Phycol. 7: 529-537.

    Google Scholar 

  • Czeczuga B (1974) Carotenoids in Euglena rubida Maix. Comp. Biochem. Physiol. 48B: 349-354.

    Google Scholar 

  • Czeczuga B (1986) Characteristic carotenoids in some phytobenthos species in the coastal area of the Adriatic Sea. Acta Soc. Bot. Pol. 55: 601-609.

    Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020: 1-24.

    Google Scholar 

  • Ding SY, Lee YK (1994) Growth of entrapped Haematococcus lacustris in alginate beads in a fluidized bed air-lift bioreactor. In Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds), Algal Biotechnology in Asia-Pacific Region, University of Malaya, Kuala Lumpur, pp. 130-134.

    Google Scholar 

  • Falk S, Król M, Maxwell DP, Rezansoff DA, Gray GR, Huner NPA (1994) Changes in the in vivo fluorescence quenching in rye and barley as a function of reduced PSII light-harvesting antenna size. Physiol. Plant. 91: 551-558.

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.

    Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycledependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99: 197-209.

    Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96: 635-643.

    Google Scholar 

  • Goodwin TW (1976) Distribution of carotenoids. In Goodwin TW (ed.), Chemistry and Biochemistry of Plant Pigments, Vol. 1, Academic Press, London, pp. 225-261.

    Google Scholar 

  • Goodwin TW (1980) The Biochemistry of Carotenoids. Vol 1, Plants. Chapman & Hall, New York, 377 pp.

    Google Scholar 

  • Hagen C, Braune W, Björn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). III. Action of a 'sunshade'. J. Phycol. 30: 241-248.

    Google Scholar 

  • Jahns P, Krause CH (1994) Xanthophyll cycle and energydependent quenching in leaves from pea plants grown under intermittent light. Planta 192: 176-182.

    Google Scholar 

  • Jeffrey SW, Mantoura RFC, Bjornland T (1997) Part IV. Data for the identification of 47 key phytoplankton pigments. In Jeffrey SW, Mantoura RFC, Wright SW (eds), Phytoplankton Pigments in Oceanography, UNESCO, Paris, pp. 449-560.

    Google Scholar 

  • Lee YK, Soh CW(1991) Accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 27: 575-577.

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603: 591-592.

    Google Scholar 

  • Lu F, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30: 829-833.

    Google Scholar 

  • Masojídek J, Torzillo G, Koblížek M, Kopecký J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes of chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209: 126-135.

    Google Scholar 

  • Mathis P, Schenck CC (1982) The function of carotenoids in photosynthesis. In Britton G, Goodwin TW (eds) Carotenoid Chemistry and Biochemistry, Pergamon, Oxford, pp. 339-352.

    Google Scholar 

  • Miki W (1991) Biological function and activity of animal carotenoids. Pure appl. Chem 63: 141-146.

    Google Scholar 

  • Niyogi K, Björkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369-1380.

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories an properties of pure cultures of cyanobacteria. J. gen. Microbiol. 111: 1-61.

    Google Scholar 

  • Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad S (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol. 44: 287-292.

    Google Scholar 

  • Schindler C, Lichtenthaler HK (1994) Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence? Plant Physiol. Biochem. 32: 813-823.

    Google Scholar 

  • Schroeder WA, Johnson EA (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J. gen. Microbiol. 139: 907-912.

    Google Scholar 

  • Tardy F, Havaux M (1996) Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J. Photochem. Photobiol. 34: 87-94.

    Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25: 147-145.

    Google Scholar 

  • Zhang DH, Lee YK (1997) Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. J. appl. Phycol. 9: 459-463.

    Google Scholar 

  • Zhang DH, Lee YK, Ng ML, Phang SM (1997) Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. appl. Phycol. 9: 147-155.

    Google Scholar 

  • Zlotnik I, Sukenik A, Dubinsky Z (1993) Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J. Phycol. 29: 463-469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masojídek, J., Torzillo, G., Kopecký, J. et al. Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. Journal of Applied Phycology 12, 417–426 (2000). https://doi.org/10.1023/A:1008165900780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008165900780

Navigation