Skip to main content
Log in

The Use of Principal Component Analysis for the Study of the Interaction of Anionic Surfactants with Hydroxypropyl-β- Cyclodextrin

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The interaction of 11 sulfosuccinic acid ester anionic surfactants with hydroxypropyl-β-cyclodextrin (HPβCD) were determined with reversed-phase thin-layer chromatography and the relative strength of interaction was calculated. The relationship between the strength of interaction and the physicochemical parameters of anionic surfactants was elucidated with principal component analysis (PCA). HPβCD interacted with the anionic surfactants decreasing their hydrophobicity. The distribution of the points of the strength of interaction and physicochemical parameters on the two dimensional nonlinear map of PC loadings suggested that the strength of interaction between the anionic surfactants and HPβCD is of mixed steric character, with hydrophobic and electronic forces being involved in the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szejtli: Cyclodextrins and Their Inclusion Complexes, Akadèmiai Kiadó, Budapest, Hungary, (1982).

    Google Scholar 

  2. J. Szejtli: Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1989).

    Google Scholar 

  3. K. Shiotani, T. Irie, K. Uekama and Y. Ishimaru: Eur. J. Pharm. Sci. 3, 139 (1995).

    Google Scholar 

  4. A. Preiss, W. Mehnert and K. H. Frömming: Pharmazie 50, 121 (1995).

    Google Scholar 

  5. B. V. Müller and E. Albers: Int. J. Pharm. 79, 273 (1992).

    Google Scholar 

  6. M. Suzuki, M. Kajtár, J. Szejtli, M. Vikman, E. Fenyvesi and L. Szente: Carbohydr. Res. 214, 25 (1991).

    Google Scholar 

  7. J. H. Park, M. D. Jang and M. J. Sain: J. Chromatogr. 595, 45 (1992).

    Google Scholar 

  8. Y. Inoue, Y. Liu, L.-H. Tong, B.-J. Shen and D.-S. Jin: J. Am. Chem. Soc. 115, 10637 (1993).

    Google Scholar 

  9. D. Seaman: Pestic. Sci. 29, 437 (1990).

    Google Scholar 

  10. A. Sanchez-Ferrer, F. Laveda and F. Garcia-Carmona: J. Agr. Food Chem. 41, 1583 (1993).

    Google Scholar 

  11. R. L. Grant, C. Yao, D. Gabaldon and D. Acosta: Toxicology 76, 153 (1992).

    Google Scholar 

  12. J. R. Marchesi, G. F. White, W. A. House and N. J. Russell: FEMS Microbiol. Lett. 124, 387 (1994).

    Google Scholar 

  13. J. R. Marchesi, S. A. Owen, G. F. White, W. A. House and N. J. Russell: Microbiology-UK 140, 2999 (1994).

    Google Scholar 

  14. T. Cserháti and J. Szejtli: Carbohydr. Res. 224, 165 (1992).

    Google Scholar 

  15. T. Cserháti, E. Fenyvesi and J. Szejtli: J. Incl. Phenom. 14, 181 (1992).

    Google Scholar 

  16. T. Cserháti: Anal. Lett. 26, 2687 (1993).

    Google Scholar 

  17. T. Cserháti and E. Forgács: J. Chromatogr. A 665, 17 (1994).

    Google Scholar 

  18. E. Forgács and T. Cserháti: Quant. Struct.-Act. Relat. 13, 38 (1994).

    Google Scholar 

  19. E. Junquuera, G. Tardajos and E. Aicart: Langmuir 9, 1213 (1993).

    Google Scholar 

  20. R. Palepu and V. C. Reinsborough: Can. J. Chem. 66, 325 (1988).

    Google Scholar 

  21. T. Cserháti and K. Valkó: Chromatographic Determination of Molecular Interactions, CRC Press, Boca Raton, (1994).

    Google Scholar 

  22. A. Buvári, J. Szejtli and L. Barcza: J. Incl. Phenom. 1, 151 (1983/1984).

    Google Scholar 

  23. A. Harada and S. Takahashi: Chem. Lett. 12, 2089 (1984).

    Google Scholar 

  24. E. Stahl (Ed.): Dünnschicht-Chromatographie, Springer Verlag, Berlin, Göttingen, Heidelberg (1962) p. 500.

    Google Scholar 

  25. C. Horváth, W. Melander and I. Molnár: J. Chromatogr. 125, 129 (1976).

    Google Scholar 

  26. K. V. Mardia, J. T. Kent and J. M. Bibby: Multivariate Analysis, Academic Press, London, (1979), p. 213.

    Google Scholar 

  27. J. W. Sammon, Jr.: IEEE Trans. Comput. C18, 401 (1969).

    Google Scholar 

  28. E. Fenyvesi, L. Szente, N. R. Russell and M. McNamara: in J. L. Atwood, J.E. D. Davies, D. D. MacNicol and F. Vögtle (eds.), Comprehensive Supramolecular Chemistry Vol. 3 Cyclodextrins (Volume Eds J. Szejtli and T. Osa). Pergamon, 1996, p. 305.

  29. K. Mochida, A. Agita, Y. Matsui and Y. Date: Bull. Chem. Soc. Jpn. 46, 3702 (1973).

    Google Scholar 

  30. D. J. Dobe, J. F. Holzwarth and R. E. Verrall: in D. Duchene (ed.), Proceedings of the 5th Iternational Symposium on Cyclodextrins, Paris, 1990, Editions de Santè, Paris, 1990, p. 225.

    Google Scholar 

  31. Y. Jiang, X. Huang and G. Ghen: Huaxue Xuebao 50, 157 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cserháti, T., Csiktusnádi kiss, G. & Augustin, J. The Use of Principal Component Analysis for the Study of the Interaction of Anionic Surfactants with Hydroxypropyl-β- Cyclodextrin. Journal of Inclusion Phenomena 33, 123–133 (1999). https://doi.org/10.1023/A:1008044118894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008044118894

Navigation