Skip to main content
Log in

Analysis of CHO-K1 cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Non-invasive magnetic resonance imaging and spectroscopy techniques have been used to monitor the growth and distribution of Chinese hamster ovary K1 cells growing in a fixed bed bioreactor composed of macroporous carriers. Diffusion-weighted 1H magnetic resonance spectroscopy was used to monitor the volume fraction of the bioreactor occupied by the cells and diffusion-weighted 1H magnetic resonance imaging was used to map cell distribution. The imaging measurements demonstrated that cell growth in the bioreactor was heterogeneous, with the highest cell densities being found at the surface of the carriers. The increase in the volume fraction occupied by the cells during cell growth showed a close correlation with bioreactor ATP content measured using 31P magnetic resonance spectroscopy. These magnetic resonance measurements, in conjunction with measurements of bioreactor glucose consumption, allowed estimation of the specific glucose consumption rate. This declined during the culture, in parallel with medium glucose concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banik GG and Heath CA (1995) Hybridoma growth and antibody production as a function of cell density and specific growth rate in perfusion culture. Biotechnol Bioeng 48: 289-300.

    Article  CAS  PubMed  Google Scholar 

  • Barry JA, McGovern, KA, Lien, Y-HH, Ashmore, B and Gillies RJ (1993) Dimethyl methylphosphonate (DMMP): A 31P nuclear magnetic resonance spectroscopic probe of intracellular volume in mammalian cell cultures. Biochemistry 32: 4665-4670.

    Article  PubMed  CAS  Google Scholar 

  • Borys MC, Linzer DIH and Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese Hamster Ovary (CHO) cells. Bio/Technology 11: 720-724.

    Article  PubMed  CAS  Google Scholar 

  • Blute T, Gillies RJ and Dale BE (1988) Cell density measurements in hollow fibre bioreactors. Biotechnol Prog 4: 202-209.

    Article  Google Scholar 

  • Brindle KM (1998) Investigating the performance of intensive mammalian cell bioreactor systems using magnetic resonance imaging and spectroscopy. Biotech Genetic Eng Rev 15: 499-520.

    CAS  Google Scholar 

  • Callies R, Jackson ME and Brindle KM (1994) Measurements of the growth and distribution of mammalian cells in a hollow-fiber bioreactor using nuclear magnetic resonance imaging. Bio/Technology 12: 75-78.

    Article  PubMed  CAS  Google Scholar 

  • Chresand TJ, Gillies RJ and Dale BE (1988) Optimum fiber spacing in a hollow fiber bioreactor. Biotechnol Bioeng 32: 983-992.

    Article  PubMed  CAS  Google Scholar 

  • Donoghue C, Brideau M, Newcomer P, Pangrle B, DiBiasio D, Walsh E and Moore S (1992) Use of magnetic resonance imaging to analyse the performance of hollow fibre bioreactors. Ann NY Acad Sci 665: 285-300.

    PubMed  CAS  Google Scholar 

  • Drury DD, Dale BE and Gillies RJ (1988) Oxygen transfer properties of a bioreactor for use within a nuclear magnetic resonance spectrometer. Biotechnol Bioeng 32: 966-974.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EJ (1996) Nuclear magnetic resonance spectroscopy and imaging. In: Willaert RG, Baron GV and de Backer L (eds) Immobilised living cell systems. (pp. 117-146) John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM and Bull AT (1992) Glucose-limited chemostat culture of Chinese Hamster Ovary cells producing recombinant human interferon-γ. Biotechnol Bioeng 39: 327-335.

    Article  CAS  PubMed  Google Scholar 

  • Gillies RJ, MacKenzie NE and Dale BE (1989) Analyses of bioreactor performance by nuclear magnetic resonance spectroscopy. Bio/Technology 7: 50-54.

    Article  CAS  Google Scholar 

  • Gilles RJ, Scherer PG, Raghunand N, Okerland LS, Martinez-Zaguilan R, Hersterberg L and Dale BE (1991) Iteration of hybridoma growth and productivity in hollow fibre bioreactors using 31P NMR. Magn Reson Med 18: 181-192.

    Google Scholar 

  • Hammer BE, Heath CA, Mirer SD and Belfort G (1990) Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging. Bio/Technology 8: 327-330.

    Article  PubMed  CAS  Google Scholar 

  • Hubbell JA and Langer R (1995) Tissue engineering. Chem Eng News 73: 42-54.

    CAS  Google Scholar 

  • Jauregui HO, Chowdhury NR and Chowdhury JR (1996) Use of mammalian liver cells for artificial liver support. Cell Transplantation 5: 353-367.

    Article  PubMed  CAS  Google Scholar 

  • Knazek RA, Gullino PM, Kholer PO and Dedrick RL (1972) Cell growth on artificial capillaries: an approach to tissue growth in vitro. Science 178: 65-67.

    PubMed  CAS  Google Scholar 

  • Knight P (1989) Hollow fiber bioreactors for mammalian cell culture. Bio/Technology 7: 459-461.

    Article  CAS  Google Scholar 

  • Langer R and Vacanti JP (1993) Tissue engineering. Science 260: 920-926.

    PubMed  CAS  Google Scholar 

  • Lin AA, Kimura R and Miller WM (1993) Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng 42: 339-350.

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren J and Häggström L (1994) Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures. Biotechnol Bioeng 44: 808-818.

    Article  CAS  PubMed  Google Scholar 

  • Lund P (1985) In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Vol. 8. (pp. 357-363) Academic Press, New York.

    Google Scholar 

  • Mancuso A, Fernandes EJ, Blanch HW and Clarke DS (1990) A nuclear magnetic resonance technique for determining hybridoma cell concentration in hollow fibre bioreactors. Bio/Technology 8: 1282-1285.

    Article  PubMed  CAS  Google Scholar 

  • Neermann J and Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Phys 166: 152-169.

    Article  CAS  Google Scholar 

  • Noll T, Biselli M and Wandrey C (1996) On-line biomass monitoring of immobilised hybridoma cells by dielectrical measurements. In: Carrondo MJT, Griffiths B and Moreira JLP (eds) Animal Cell Technology. (pp. 289-294), Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Ong CP, Pörtner R, Märkl H, Yamazsaki Y, Yasuda K and Matsumura M (1994) High density cultivation of hybridoma in charged porous carriers. J Biotechnol 34: 259-268.

    Article  PubMed  CAS  Google Scholar 

  • Piret JM and Cooney CL (1990a) Mammalian cell and protein distributions in ultrafiltration bioreactors. Biotechnol Bioeng 36: 902-910.

    Article  CAS  PubMed  Google Scholar 

  • Piret JM and Cooney CL (1990b) Model of oxygen transport limitations in hollow fibre bioreactors. Biotechnol Bioeng 37: 80-92.

    Article  Google Scholar 

  • Seewoster T and Lehmann J (1997) Cell size distribution as a parameter for the predetermination of exponential growth during repeated batch cultivation of CHO cells. Biotechnol Bioeng 55: 793-797.

    Article  PubMed  CAS  Google Scholar 

  • van Zijl PCM, Moonen CTW, Faustino P, Pekar J, Kaplan O and Cohen JS (1991) Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc Natl Acad Sci USA 88: 3228-3232.

    Article  PubMed  CAS  Google Scholar 

  • Wiesmann R, Maier ST, Marx U and Buchholz R (1994) Characterisation of oxygen transfer in a membrane-aerated hollow-fibre bioreactor using modified microcoaxial needle electrodes. Appl Microbiol Biotechnol 41: 531-536.

    Article  CAS  Google Scholar 

  • Williams SNO, Callies RM and Brindle KM (1997) Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging. Biotechnol Bioeng 58: 56-61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelwall, P.E., Brindle, K.M. Analysis of CHO-K1 cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. Cytotechnology 30, 121–132 (1999). https://doi.org/10.1023/A:1008039011960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008039011960

Navigation