Skip to main content
Log in

On the Recognition and Location of Partially Occluded Objects

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The recognition and location of partially occluded objects is important for image-guided robot automation. A computational object recognition system consists of three main parts: shape representation, matching strategies and verification. The shape representation scheme, which is always application-oriented, should keep extracted features as invariant as possible. This paper presents a new model-based object recognition scheme for general two dimensional objects in a cluttered scene. The scheme considers objects subjected to similarity transformations (i.e., a combination of rotation, scaling and translation). It employs a new feature detection algorithm, combining curvature measures and polygonal approximation. An approximate, but efficient matching strategy is proposed for hypothesis generation and synthetic verification procedures are introduced to improve the robustness of the system. Experiment results are presented to show that the system works effectively and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayache, N. and Faugeras, O. D.: HYPER: A new approach for the recognition and position of 2-dimensional objects, IEEE Trans. Pattern Anal. Machine Intell. 8 (January 1986), 44–54.

    Google Scholar 

  2. Anderson, I. M. and Bezdek, J. C.: Curvature and tangential deflection of discrete arc: A theory based on the commutator of scatter matrix pairs and its application to vertex detection planar shape data, IEEE Trans. Pattern Anal. Machine Intell. 6 (January 1984), 27–40.

    Google Scholar 

  3. Bolles, R. C. and Cain, R. A.: Recognizing and locating partially visible objects: The focus feature method, Internat. J. Robotics Res. 1(3) (1982), 57–81.

    Google Scholar 

  4. Davis, L. S.: Understanding shape: Angles and sides, IEEE Trans. Comput. 26 (March 1977), 236–242.

    Google Scholar 

  5. Davis, L. S.: Shape matching using relaxation techniques, IEEE Trans. Pattern Anal. Machine Intell. 1 (January 1979), 60–72.

    Google Scholar 

  6. Teh, C. and Chin, R. T.: On the detection of dominant points on digital curves, IEEE Trans. Pattern Anal. Machine Intell. 11(8) (August 1989), 859–872.

    Google Scholar 

  7. Attneave, F.: Some informational aspects of visual perception, Psychol. Rev. 61(3) (1954), 183–193.

    Google Scholar 

  8. Blakemore, C. and Over, R.: Curvature detectors in human vision?, Perception 3 (1975), 3–7.

    Google Scholar 

  9. Asada, H. and Brady, M.: The curvature primal sketch, IEEE Trans. Pattern Anal. Machine Intell. 8(1) (1986), 2–14.

    Google Scholar 

  10. Yuille, A. L. and Poggio, T. A.: Scaling theorems for zero crossings, IEEE Trans. Pattern Anal. Machine Intell. 8(1) (1986), 15–25.

    Google Scholar 

  11. Mokhtarian, F. and Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes, IEEE Trans. Pattern Anal. Machine Intell. 8(1) (1986), 34–43.

    Google Scholar 

  12. Grimson, W. E. L. and Lozano-Pérez, T.: Model-based recognition and localization from sparse range or tactile data, Internat. J. Robotics Res. 3(3) (1984), 3–35.

    Google Scholar 

  13. Grimson, W. E. L. and Lozano-Pérez, T.: Localizing overlapping parts by searching the interpretation tree, IEEE Trans. Pattern Anal. Machine Intell. 9(4) (1987), 469–482.

    Google Scholar 

  14. Grimson, W. E. L.: On recognition of curved objects, IEEE Trans. Pattern Anal.Machine Intell. 11(6) (1989), 632–643.

    Google Scholar 

  15. Koch, M. W. and Kashyap, R. L.: Using polygons to recognize and locate partially occluded objects, IEEE Trans. Pattern Anal. Machine Intell. 9(4) (1987), 483–494.

    Google Scholar 

  16. Turney, J. L., Mudge, T. N., and Volz, R. A.: Recognizing partially occluded parts, IEEE Trans. Pattern Anal. Machine Intell. 7(4) (1985), 410–421.

    Google Scholar 

  17. Knoll, T. F. and Jain, R. C.: Recognizing partially visible objects using feature indexed hypotheses, IEEE Trans. Robotics and Automation 5(4) (1986), 3–13.

    Google Scholar 

  18. Gorman, J. W., Mitchell, O. R., and Kuhl, F. P.: Partial shape recognition using dynamic programming, IEEE Trans. Pattern Anal. Machine Intell. 10(2) (1988).

  19. Ansari, N. and Delp, E. J.: Partial shape recognition: A landmark-based approach, IEEE Trans. Pattern Anal. Machine Intell. 12(5) (1990), 470–483.

    Google Scholar 

  20. Wolfson, H. J. On curve matching, IEEE Trans. Pattern Anal. Machine Intell. 12(5) (1990), 483–497.

    Google Scholar 

  21. Schwartz, J. T. and Sharir, M.: Identification of partially obscured objects in two and three dimensions by matching noisy characteristic curves, Internat. J. Robotics Res. 6(2) (1987), 29–44.

    Google Scholar 

  22. Kalvin, A., Schonberg, E., Schwartz, J. T., and Sharir, M.: Two-dimensional model-based boundary matching using footprints, Internat. J. Robotics Res. 5(4) (1986), 38–55.

    Google Scholar 

  23. Stein, F. and Medioni, G.: Structural indexing: Efficient 2-D object recognition, IEEE Trans. Pattern Anal. Machine Intell. 14(12) (1992), 1198–1204.

    Google Scholar 

  24. Stein, F. and Medioni, G.: Structural indexing: Efficient 3-dimensional object recognition, IEEE Trans. Pattern Anal. Machine Intell. 14(2) (1992), 125–145.

    Google Scholar 

  25. Grimson, W. E. L. and Huttenlocher, D. P.: On the sensitivity of the Hough transform for object recognition, IEEE Trans. Pattern Anal. Machine Intell. 12(3) (1990), 255–274.

    Google Scholar 

  26. Stockman, G., Kopstein, S., and Benett, S.: Matching images to models for registration and object detection via clustering, IEEE Trans. Pattern Anal.Machine Intell. 4(3) (1982), 229–241.

    Google Scholar 

  27. Bruckstein, A. M., Holt, R. J., Netravall, A. N., and Richardson, T. J.: Invariant signatures for planar shape recognition under partial occlusion, CVGIP: Image Under-standing 58(1) (1993), 49–65.

    Google Scholar 

  28. Shneier, M. O., Lumia, R., and Kent, E.W.: Model-based strategies for high-level robot vision, Comput. Vision Graphics Image Process. 33 (1986), 293–306.

    Google Scholar 

  29. Hwang, V. S. S.: Recognizing and locating partially occluded 2-D objects: Symbolic clustering method, IEEE Trans. System Man Cybernet. 19(6) (1989), 1644–1656.

    Google Scholar 

  30. Besl, P. J. and Jain, R. C.: Three-dimensional object recognition, ACM Comput. Surveys 17(1) (1985), 75–154.

    Google Scholar 

  31. Chin, R. T. and Dyer, C. R.: Model-based recognition in robot vision, ACM Comput. Surveys 18(1) (1986), 67–108.

    Google Scholar 

  32. Suetens, P., Fua, P., and Hanson, A. J.: Computational strategies for object recognition, ACM Comput. Surveys 24(1) (1992), 5–61.

    Google Scholar 

  33. Zhu, Y., Seneviratne, L. D., and Earles, S.W. E.: Optimal polygonal approximation of digitized curves, IEE Proc. Vision Image Signal Process. 144(1) (1997), 8–14.

    Google Scholar 

  34. Harary, F.: Graph Theory, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Seneviratne, L.D. On the Recognition and Location of Partially Occluded Objects. Journal of Intelligent and Robotic Systems 25, 133–151 (1999). https://doi.org/10.1023/A:1008027403268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008027403268

Navigation