Skip to main content

Advertisement

Log in

Gene transfer into canine myoblasts

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

We have developed and characterized cultures of healthy and dystrophic canine myoblasts for the evaluation of various gene transfer protocols. The number of desmin-positive myoblasts was elevated (>>80%) in cultures of myoblasts obtained from different muscle territories, the diaphragm muscle giving rise to the purest cultures. Myoblasts from dogs turned out to be a very convenient source of well transfectable and transducible cells. Transfection with plasmid DNA allowed efficient transgene expression (50% of β-galactosidase positive cells and about 375 ng luciferase/mg protein after transfection with a calcium phosphate-precipitated plasmid). Infection with high concentrations of adenoviral and retroviral vectors allowed transgene (β-galactosidase or mini-dystrophin) detection in about 75 to 90% of the canine cells. Therefore, primary dog myoblast cultures represent a useful in vitro model for viral and non-viral gene delivery, as well as for functional evaluation and cell grafting with applications in genetic diseases, vaccination or production of circulating therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA and Davies KE (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352: 815-818.

    Article  PubMed  CAS  Google Scholar 

  • Askanas V and Engel WK (1975) A new program for investigating adult human skeletal muscle grown aneurally in tissue culture. Neurology 25: 58-67.

    PubMed  CAS  Google Scholar 

  • Askanas V and Gallez-Hawkins G. (1985) Synergistic influence of polypeptide growth factors on cultured human muscle. Arch Neurol 42: 749-752.

    PubMed  CAS  Google Scholar 

  • Bischoff R, Cordier Y, Perraud F, Thioudellet C, Braun S, and Pavirani A (1997) Transfection of myoblasts in primary culture with isomeric cationic cholesterol derivatives. Anal Biochem 254: 69-81.

    Article  PubMed  CAS  Google Scholar 

  • Bonavaud S, Thibert P, Gherardi RK and Barlovatz-Meimon G (1997) Primary human muscle satellite cell culture: variations of cell yield, proliferation and differentiation rates according to age and sex of donors, site of muscle biopsy, and delay before processing. Biol Cell 89: 233-240.

    Article  PubMed  CAS  Google Scholar 

  • Brinkhous KM (1992) Gene transfer in the hemophilias: retrospect and prospect. Thromb Res 67: 329-338.

    Article  PubMed  CAS  Google Scholar 

  • Chiu RC, Zibaitis A and Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60: 12-18.

    PubMed  CAS  Google Scholar 

  • Cooper BJ, Winand NJ, Stedman H, et al. (1988) The homologous of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334: 154-156.

    Article  PubMed  CAS  Google Scholar 

  • Cooper BJ (1990) The role of the xmd dog in the assessment of myoblast transfer therapy. Adv Exp Med Biol 280: 279-282.

    PubMed  CAS  Google Scholar 

  • Felgner JH, Kumar R, Sridnar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M and Felgner PL (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269: 2550-2561.

    PubMed  CAS  Google Scholar 

  • Ferrara ML, Occhiodoro T, Fuller M, Hawthorne WJ, Teutsch S, Tucker VE, Hopwood JJ, Stewart GJ and Anson DS (1997) Neuromuscul Disord 7: 361-366.

    Article  PubMed  CAS  Google Scholar 

  • Gao X and Huang L (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 179: 280-285.

    Article  PubMed  CAS  Google Scholar 

  • Gautier C, Mehtali M and Lathe R. (1989) A ubiquitous mammalian expression vector, pHMG, based on a housekeeping gene promoter. Nucleic Acids Res. 17: 8389.

    PubMed  CAS  Google Scholar 

  • Graham FL and Prevec L (1991) Manipulation of adenovirus vectors. Methods Mol Biol 7: 109-128.

    CAS  Google Scholar 

  • Graham FL, Smiley J, Russell WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59-74.

    PubMed  CAS  Google Scholar 

  • Graham FL and Van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456-467.

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD (1996) Commentary on the present state of knowledge for myoblast transfer therapy. Cell Transplant 5: 431-433.

    Article  PubMed  CAS  Google Scholar 

  • Hall CV, Jacob PE, Ringold GM and Lee F (1983) Expression and regulation of Escherichia coli lac Z gene fusions in mammalian cells. J Mol Appl Genet 2: 101-109.

    PubMed  CAS  Google Scholar 

  • Howell JMcC, Fletcher S, Kakulas BA, O'Hara M, Lochmuller H and Karpati G (1997) Use of the dog model for Duchenne muscular dystrophy in gene therapy trials. Neuromuscul Disord 7: 325-328.

    Article  PubMed  CAS  Google Scholar 

  • Howell JM, Fletcher S, O'Hara A, Johnsen RD, Lloyd F and Kakulas BA (1998) Direct dystrophin and reporter gene transfer into dog muscle in vivo. Muscle and Nerve 21: 159-165.

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Vilquin JT, Skuk D, Roy B, Goulet M, Lille S, Dugré FJ, Asselin I, Roy R, Fardeau M and Tremblay JP (1998) Myoblast transplantation in non-dystrophic dog. Neuromusc Disord 8: 95-110.

    Article  PubMed  CAS  Google Scholar 

  • Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B, Schultz H, Stoeckel F, Pavirani A and Mehtali M (1998) In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72: 2022-2032.

    PubMed  CAS  Google Scholar 

  • Jezyk PF (1982) Hyperkaliemic periodic paralysis in a dog. J Am Anim Hosp Assoc 18: 977-980.

    Google Scholar 

  • Kornegay JN (1992) Golden retriever muscular dystrophy: the model and relevance to developmental therapeutics. In: Kakulas BA, Howell JmcC, Roses AD (eds) Duchenne muscular dystrophy animal models and genetic manipulation. (pp 105-108) Raven Press, New York.

    Google Scholar 

  • MacGregor et al. (1991) Use of E coli lacZ (β-galactosidase) as a reporter gene. In: Murray EJ (ed) Methods in Molecular Biology. Vol 7 Gene transfer and expression protocols. (pp. 217-241) Humana Press: Clifton, NJ, 1991.

    Google Scholar 

  • Manthorpe M, Cornefert-Jensen, Hartikka J, Felgner J, Rundell A, Margalith M and Dwaeki V (1993) Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 4: 419-431.

    PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493-495.

    Article  PubMed  CAS  Google Scholar 

  • Nelson TE (1991) Malignant hyperthermia in dogs. J Am Vet Med Assoc 198: 989-994.

    PubMed  CAS  Google Scholar 

  • Nicholson LV, Davison K, Falkous, G, Harwood C, O'Dinnel E, Slater CR and Harris JB (1989) Dystrophin in skeletal muscle. I. Western blot analysis using a monoclonal antibody. J Neurol Sci 94: 125-136.

    Article  PubMed  CAS  Google Scholar 

  • Pande SV and Murthy MSR (1994) A modified micro-Bradford procedure for elimination of interference from sodium dodecylsulfate, other detergents, and lipids. Anal Biochem 220: 424-426.

    Article  PubMed  CAS  Google Scholar 

  • Peirone MA, Delaney K, Kwiecin J, Fletch A and Chang PL (1998) Delivery of recombinant gene product to canines with nonautologous microencapsulated cells. Hum Gene Ther 9: 195-206.

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular cloning — A laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanes JR, Rubenstein JL and Nicolas JF (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J 5: 3133-3142.

    PubMed  CAS  Google Scholar 

  • Shull RM, Lu X, McEntee MF, Bright RM, Pepper KA and Kohn DB (1996) Myoblast gene therapy in canine mucopolysaccharidosis I: abrogation by an immune response to a-L-Iduronidase. Hum Gene Ther 7: 1595-1603.

    PubMed  CAS  Google Scholar 

  • Sitbon M, Sola B, Evans L, Nishio J, Hayes SF, Nathanson K, Garon CF, Chesebro B (1986) Hemolytic anemia and erythroleukemia, two distinct pathogenic effects of Friend MuLV: mapping of the effects to different regions of the viral genome. Cell 47: 851-859.

    Article  PubMed  CAS  Google Scholar 

  • Stratford-Perricaudet LD, Makeh I, Perricaudet M and Briand P (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 90: 626-630.

    Article  PubMed  CAS  Google Scholar 

  • Valentine BA, Winand NJ, Pradhan D, Moise NS, de Lahunta A, Kornegay JN and Cooper BJ (1992) Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 42: 352-356.

    Article  PubMed  CAS  Google Scholar 

  • Vara J, Malpartida F, Hopwood DA and Jiménez A (1985) Cloning and expression of a puromycin N-acetyl transferase gene from Streptomyces alboniger in Streptomyces lividans and Escherichia coli. Gene 33: 197-206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reiner Bischoff is now at

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, S., Thioudellet, C., Perraud, F. et al. Gene transfer into canine myoblasts. Cytotechnology 30, 181–189 (1999). https://doi.org/10.1023/A:1008026913715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008026913715

Navigation