Skip to main content

Advertisement

Log in

Cell engineering for muscle gene therapy: Extemporaneous production of retroviral vector packaging macrophages using defective herpes simplex virus type 1 vectors harbouring gag, pol, env genes

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Gene therapy as a treatment for neuromuscular diseases is an ever-developing concept based on the use of DNA as the therapeutic agent. In the search for appropriate strategies a bottleneck exists, however, concerning the targeting of vectors carrying the therapeutic gene, to all pathologic sites. These diseases are often characterised by multiple widespread lesions spread over a large area, rendering administration by local injection into tissues, clinically irrelevant. With this in mind, we have proposed that circulating cells (monocytes/macrophages), which home naturally to inflammatory lesions, characteristic of degenerating muscle, could be used as shuttles able to track down every damaged site, and deliver there a corrective gene. Our aim is to mobilise a corrective gene from these infiltrating monocyte-macrophages, into muscle cells, a process of in situ cell to cell gene transfer which could be accomplished using a retroviral vector, since the regeneration process involves the proliferation of muscle precursors before they fuse to form replacement fibres. For this, monocyte-macrophages must be engineered into ‘packaging cells’ containing both the replication deficient retrovirus carrying the gene of interest and an helper genome (gag-pol-env) needed for its assembly and secretion. Here, we have transduced a monocyte cell line using a defective murine Moloney leukemia retrovirus carrying the LacZ reporter gene. This provided us with a platform to investigate the possibility of gag-pol-env vector driven packaging of the defective retrovirus by macrophages. We show that an herpes simplex virus type I amplicon harbouring the Moloney gag, pol, env sequences is able to rescue the defective retrovirus vector from macrophages, allowing gene transfer into muscle precursor cells. After fusion, these cells gave rise to genetically modified myotubes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA and Davies KE (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352: 815-818.

    Article  PubMed  CAS  Google Scholar 

  • Bilang-Bleuel A, Revah F, Colin P, Locquet I, Robert JJ, Mallet J and Horellou P (1997). Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci USA 94(16): 8818-8823.

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM (1986) Regeneration of entire squeletal muscle. Federation Proceedings 45(5): 1456-1460.

    PubMed  CAS  Google Scholar 

  • Crocker PR and Gordon SJ (1989) Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody. Exp Med 169(4): 1332-1346.

    Google Scholar 

  • Deconinck N, Ragot T, Marechal G, Perricaudet M and Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci USA 93(8): 3570-3574.

    Article  PubMed  CAS  Google Scholar 

  • Emery A, Duchenne Muscular Dystrophy, Oxford University Press, 1993.

  • Erbacher P, Bousser MT, Raimond J, Monsigny M, Midoux P and Roche AC (1996) Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum Gene Ther 7(6): 721-729.

    PubMed  CAS  Google Scholar 

  • Fassati A, Wells DJ, Walsh FS and Dickson G (1996) Transplantation of retroviral producer cells for in vivo gene transfer into mouse skeletal muscle. H Gene Therapy 7(5): 595-602.

    CAS  Google Scholar 

  • Fassati A, Wells DJ, Sgro Serpente PA, Walsh FS, Brown SC, Strong PN and Dickson G (1997) Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells. J Clin Invest 100(3): 620-628.

    Article  PubMed  CAS  Google Scholar 

  • Fraefel C, Song S, Lim F, Lang P, Yu L, Wang Y, Wild P and Geller AI (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 70(10): 7190-7197.

    PubMed  CAS  Google Scholar 

  • Haddada H, Lopez M, Martinache C, Ragot T, Abina MA and Perricaudet M (1993) Efficient adenovirus-mediated gene transfer into human blood monocyte-derived macrophages. Biochem Biophys Res Commun 195(3): 1174-1183.

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Endo RI and Nemerow GR (1995) Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 69(4): 2257-2263.

    PubMed  CAS  Google Scholar 

  • Jacoby DR, Fraefel C and Breakefield XO (1997) Hybrid vectors: a new generation of virus-based vectors designed to control the cellular fate of delivered genes. Gene Therapy 4(12): 1281-1283.

    Article  PubMed  CAS  Google Scholar 

  • Kristoffersen AK, Sindre H, Mandi Y, Rollag H and Degre M (1997) Effect of adenovirus 2 on cellular gene activation in blood-derived monocytes and macrophages. APMIS 105(5): 402-409.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MS, Ho DY, Sun GH, Steinberg GK and Sapolsky RM (1996) Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J Neurosci 16(2): 486-496.

    PubMed  CAS  Google Scholar 

  • Le Gal La Salle G, Robert JJ, Berrard S, Ridoux V, Stratford-Perricaudet LD, Perricaudet M and Mallet J (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259(5097): 988-990.

    PubMed  CAS  Google Scholar 

  • Lowenstein PR, Fournel S, Bain D, Tomasec P, Clissold P, Castro MG and Epstein A (1994) Herpes simplex virus 1 (HSV-1) helper co-infection affects the distribution of an amplicon encoded protein in glia. Neuroreport 5(13): 1625-1630.

    PubMed  CAS  Google Scholar 

  • Miller AD and Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. BioTechniques 7(9): 980-982.

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM and Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(50259): 263-267.

    PubMed  CAS  Google Scholar 

  • Orimo S, Hiyamuta E, Arahata K and Sugita H (1991) Analysis of inflammatory cells and complement C3 in bupivacaine-induced myonecrosis. Muscle and Nerve 14(6): 515-520.

    Article  PubMed  CAS  Google Scholar 

  • Parrish EP, Cifuentes-Diaz C, Li ZL, Vicart P, Paulin D, Dreyfus PA, Peschanski M, Harris AJ and Garcia L (1996) Targeting widespread sites of damage in dystrophic muscle: engrafted macrophages as potential shuttles. Gene Therapy 3(1): 13-20.

    PubMed  CAS  Google Scholar 

  • Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N and Reier PJ (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Therapy 4(1): 16-24.

    Article  PubMed  CAS  Google Scholar 

  • Quantin B, Perricaudet LD, Tajbakhsh S and Mandel JL (1992) Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci USA 89(7): 2581-2584.

    Article  PubMed  CAS  Google Scholar 

  • Ragot T, Vincent N, Chafey P, Vigne E, Gilgenkrantz H, Couton D, Cartaud J, Briand P, Kaplan JC, Perricaudet M. et al. (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361(60413): 647-650.

    Article  PubMed  CAS  Google Scholar 

  • Savard N, Cosset FL and Epstein AL (1997) Defective herpes simplex virus type 1 vectors harboring gag, pol, and env genes can be used to rescue defective retrovirus vectors. J Virol 71(5): 4111-4117.

    PubMed  CAS  Google Scholar 

  • Schultz E and Lipton PH (1980) Mech Aging Dev 13: 105-112.

    Article  Google Scholar 

  • Smith MJ and Koch GLE (1987) Differential expression of murine macrophage surface glycoprotein antigens in intracellular membranes. J Cell Sci 87(Pt1): 113-119.

    PubMed  CAS  Google Scholar 

  • Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D, Gown AM, Winther B, Meuse L, Cohen LK, Thompson AR and Kay MA (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16(3): 270-276.

    Article  PubMed  CAS  Google Scholar 

  • Snyder RO, Spratt SK, Lagarde C, Bohl D, Kaspar B, Sloan B, Cohen LK and Danos O (1997) Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther 8(16): 1891-1900.

    PubMed  CAS  Google Scholar 

  • Spaete RR and Frenkel N (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30(1): 295-304.

    Article  PubMed  CAS  Google Scholar 

  • Vicart P, Schwartz B, Vandewalle A, Bens M, Delouis C, Panthier JJ, Pournin S, Babinet C and Paulin D (1994) Immortalization of multiple cell types from transgenic mice using a transgene containing the vimentin promoter and a conditional oncogene. Exp Cell Res 214(1): 35-45.

    Article  PubMed  CAS  Google Scholar 

  • Weir JP, Dacquel EJ and Aronovitz J (1996) Herpesvirus vector-mediated gene delivery to human monocytes. Hum Gene Ther 7(11): 1331-1338.

    PubMed  CAS  Google Scholar 

  • Vincent N, Ragot T, Gilgenkrantz H, Couton D, Chafey P, Gregoire A, Briand P, Kaplan JC, Kahn A and Perricaudet M (1993) Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nature Genet 5(2): 130-134.

    Article  PubMed  CAS  Google Scholar 

  • Wickham TJ, Tzeng E, Shears LL 2nd, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A and Kovesdi I (1997) Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 71(11): 8221-8229.

    PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A and Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 245(4949): 1465-1468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrish, E., Peltékian, E., Dickson, G. et al. Cell engineering for muscle gene therapy: Extemporaneous production of retroviral vector packaging macrophages using defective herpes simplex virus type 1 vectors harbouring gag, pol, env genes. Cytotechnology 30, 173–180 (1999). https://doi.org/10.1023/A:1008022713466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008022713466

Navigation