Skip to main content
Log in

Position-Based Fuzzy Force Control for Dual Industrial Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a fuzzy force control framework is proposed for dual-industrial robot systems. The master/slave control method is used in dual-robot systems. Two MITSUBISHI MELFA RV-M1 industrial robots, one is equipped with an BL Force/Torque sensor and the other is not, are utilized for implementing the dual-arm system. In order to adapt various stiffness of the holding object, an adaptable fuzzy force control scheme has been proposed to improve the performance. The ability of the adaptable force control system is achieved by tuning the scaling factor of the fuzzy logic controller. Successful experiments are carried out for the dual-robot system handling an object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, T. E. and Soloway, D. I.: Force control of a multi-arm robot system, IEEE, CH2555-1/88/0000/1490, 1988.

  • Astrom, K. J. and Wittenmark, B.: Adaptive Control, 2nd edn, Addison-Wesley, 1995.

  • Boscolo, A. and Drius, F.: Computer aided tuning and validation of fuzzy system, in: Proc. 1st IEEE Int. Conf. Fuzzy Syst., 1992, pp. 605–614.

  • Carignan, C. R. and Akin, D. L.: Optimal force distribution for payload positioning using a planar dual-arm robot, J. Dynamic System, Measurement, and Control 111 (1989), 205–210.

    Google Scholar 

  • Chan, S. P.: A neural network compensator for uncertainties in robot assembly, J. Intelligent and Robotic Systems 13 (1995), 127–141.

    Google Scholar 

  • Corbet, T., Sepehri, N., and Lawrence, P. D.: Fuzzy control of a class of hydraulically actuated industrial robots, IEEE Trans. Control Systems Technology 4(4) (1966), 419–426.

    Article  Google Scholar 

  • Degoulange, E. and Dauchez, P.: External force control of an industrial PUMA 560 robot, J. Robotic Systems 11(6) (1994), 523–540.

    Google Scholar 

  • Fujii, S. and Kurono, S.: Coordinated computer control of a pair of manipulators, Industrial Robot (1975), 155–161.

  • Fukuda, T., Kurihara, T., Shibata, T., Tokita, M., and Mitsuoka, T.: Application of neural network-based servo controller to position, force and stabbing control by robotic manipulator, JSME Int. J. Series III 34(2) (1991), 303–309.

    Google Scholar 

  • Hayati, S.: Hybrid position/force control of multi-arm cooperating robots, in: Proc. IEEE Int. Conf. Robotics and Automation, 1986, pp. 82–89.

  • Hogan, N.: Impedance control: an approach to manipulation: Part I – Theory, Part II – Implementation, and Part III – Application, ASME J. Dynamic Systems, Measurement, and Control 107 (1985), 1–24.

    Google Scholar 

  • Hogan, N.: Stable execution of contact tasks using impedance control, in: IEEE Int. Conf. Robotics and Automation, 1987, pp. 595–601.

  • Hu, Y. R., Goldenberg, A. A., and Zhou, C.: Motion and force control of coordinated robots during constrained motion tasks, Int. J. Robotics Res. 14(4) (1995), 351–365.

    Google Scholar 

  • Ishida, T.: Force control in coordination of two arms, in: Proc. 5th Int. Joint Conf. in Artificial Intelligence, 1977, pp. 717–722.

  • Ishiguro, A., Furuhashi, T., and Okuma, S.: A neural network compensator for uncertainties of robotics manipulators, IEEE Trans. Industrial Electronics 39(6) (1992), 565–570.

    Article  Google Scholar 

  • Kazerooni, H., Sheridan, T. B., and Houpt, P. K.: Robust compliant motion for manipulator, Part 1: The fundamental concepts, Part 2: Design method, IEEE J. Robotics and Automation RA-2(2) (1986), 82–105.

    Google Scholar 

  • Kazerooni, H.: Robust nonlinear impedance control for robot manipulators, IEEE Int. Conf. Robotics and Automation 2 (1987), 741–750.

    Google Scholar 

  • Kelly, R., Carelli, R., Amestegui, M., and Ortega, R.: Adaptive impedance control of robot manipulators, Int. J. Robotics and Automation 4(3) (1989), 134–141.

    Google Scholar 

  • Koo, C. Y. and Wang, S. P. T.: Nonlinear robust hybrid control of robotic manipulators, ASME J. Dynamics Systems, Measurement, and Control 112 (1990), 48–54.

    Google Scholar 

  • Liu, M. H.: Force-controlled fuzzy-logic-based robotic deburring, Control Eng. Practice 3(2) (1995), 189–201.

    Article  Google Scholar 

  • MacVicar-Whelan, P. J.: Fuzzy sets for man-machine interactions, Int. J. Man-Machine Studies 8 (1977), 687–697.

    Google Scholar 

  • Maeda, M. and Murakami, S.: A self-tuning fuzzy controller, Fuzzy Sets and Systems 51 (1992), 29–40.

    Article  Google Scholar 

  • Mason, M. T.: Compliance and force control for computer controlled manipulators, IEEE Trans. Systems, Man, and Cybernetics SMC-11 (1981), 418–432.

    Google Scholar 

  • Merlet, J. P.: C-surface applied to the design of a hybrid force-position robot controller, Proc. 1987 IEEE Int. Conf. Robotics and Automation 2 (1987), 1055–1059.

    Google Scholar 

  • Palm, R.: Scaling of fuzzy controllers using the cross-correlation, IEEE Trans. Fuzzy Systems 3(1) (1995), 116–123.

    Article  Google Scholar 

  • Procyk, T. J. and Mamdani, E. H.: A linguistic self organizing process controller, Automatica 15 (1979), 15–30.

    Article  Google Scholar 

  • Raibert, M. and Craig, J.: Hybrid position/force control of manipulators, ASME J. Dynamic System, Measurement and Control 102 (1981), 126–132.

    Google Scholar 

  • Schneider, S. A. and Cannon, R. H.: Object impedance control for cooperative manipulation: theory and experimental results, IEEE Trans. Robotics and Automation 8(3) (1992), 383–394.

    Article  Google Scholar 

  • Smith, S. M. and Comer, D. J.: An algorithm for automated fuzzy logic controller tuning, in: Proc. 1st IEEE Int. Conf. Fuzzy Syst., 1992, pp. 615–622.

  • Tang, J., Watanabe, K., and Nakamura, M.: Block hierarchical fuzzy-neural networks and their application to a mobile robot control, J. Robotics and Mechatronics 7(1) (1995), 12–20.

    Google Scholar 

  • Viljamaa, P. and Koivo, H. K.: Tuning of multivariable fuzzy logic controller, in: Proc. 2nd IEEE Int. Conf. Fuzzy Syst., 1993, pp. 697–701.

  • Volpe, R. and Khosla, P.: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Automatic Control 38(11) (1993), 1634–1650.

    Article  Google Scholar 

  • Watanabe, K. and Tzafestas: Fuzzy logic controller as a compensator in the problem of tracking control of manipulators, in: Proc. IFToMM-jc Int. Symp. on Theory of Machines and Mechanisms, 1992, pp. 98–103.

  • Yoshikawa, T. and Sudou, A.: Dynamic hybrid position-force control of robot manipulators: On-line estimation of unknown constraint, IEEE, CH2876-1/90/0000/1231, 1990.

  • Yoshikawa, T. and Zheng, X. Z.: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object, Int. J. Robotics Res. 12(3) (1993), 219–230.

    Google Scholar 

  • Zheng, L.: A practical guide to tune PI-like fuzzy-controllers, in: Proc. 1st IEEE Int. Conf. Fuzzy Syst., 1992, pp. 633–640.

  • Zheng, L.: A practical computer-aided tuning technique for fuzzy controller, in: Proc. 2nd IEEE Int. Conf. Fuzzy Syst., 1993, pp. 701–707.

  • Zheng, Y. F. and Luh, J. Y. S.: Optimal load distribution for two industrial robots handling a single object, IEEE, CH2555-1/88/0000/0344, 1988.T1384.tex; 11/08/1997; 11:52; v.7; p.17 JINT1384.tex; 11/08/1997; 11:52; v.7; p.16

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, ST., Huang, AK. Position-Based Fuzzy Force Control for Dual Industrial Robots. Journal of Intelligent and Robotic Systems 19, 393–409 (1997). https://doi.org/10.1023/A:1007984412204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007984412204

Navigation