Skip to main content
Log in

Investigations on oxygen limitations of adherent cells growing on macroporous microcarriers

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Macroporous microcarriers are commonly applied to fixed and fluidized bed bioreactors for the cultivation of stringent adherent cells. Several investigations showed that these carriers are advantageous in respect to a large surface area (Griffiths, 1990; Looby, 1990a).

When growing a rC-127 cell line on Cytoline 2 (Pharmacia Biotech), no satisfactory product yield could be achieved. A possible limitation in the supply of nutrient components was investigated to explain these poor results. No significant concentration gradients could be detected. Nevertheless, fluorescence staining revealed a decreasing viability, particularly inside the macroporous structure. Therefore, oxygen transfer to and into the carriers was examined by means of an oxygen microprobe during the entire process. Additional mathematical modeling supported these results.

The maximum penetration depth of oxygen was determined to be 300 μm. A critical value influencing the oxygen uptake rate of the rC-127 cells occured at a dissolved oxygen concentration of 8% of air saturation. A significant mass transfer resistance within a laminar boundary film at the surface of the carrier could be detected. This boundary layer had a depth of 170 μm. The results showed that even a 40% air saturation in the bulk liquid could not provide an efficient oxygenation of the surface biofilm during the exponential growth phase. Fluorescent staining reveals a poor viability of cells growing inside the carrier volume. Thus, oxygen supply limits the growth of rC-127 cells on macroporous microcarriers. Poor process performance and low product yield could be explained this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews G (1988) Fluidized-bed bioreactors. Biotech and Gen Eng Rev 6: 151–178

    CAS  Google Scholar 

  • Bassi AS, Rohani S and MacDonald DG (1991) Fermentation of Cheese Whey in an immobilized-cell fluidized bed reactor. Chem Engineering Communications 103: 119–129

    CAS  Google Scholar 

  • Baumgärtl H and Lübbers DW (1973) Platinum needle electrode for polarographic measurement of oxygen and hydrogen, in: Oxygen Supply, Verlag Urban and Schwarzenberg

  • Baumgärtl H and Lübbers DW (1983) Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties, in E. Gnaiger and H Forstner (eds.) Polarographic oxygen sensors, Springer Verlag, Berlin, Heidelberg, pp. 37–65

    Google Scholar 

  • Beunink J, Baumgärtl H, Zimelka W and Rehm HJ (1989) Determination of oxygen gradients in single Ca-alginate beads by means of oxygen microelectrodes, Experientia 45: 1041–1047

    Article  CAS  Google Scholar 

  • Bignami L, Eramo B, Gavasci R, Ramadori R and Rolle E (1991) Modelling and experiments on fluidized-bed biofilm reactors, Water science and technology 24No. 7: 47–58

    CAS  Google Scholar 

  • Bliem R and Katinger H (1988) Scale-up engineering in animal cell technology: part II. TIBTECH 6: 224–230

    CAS  Google Scholar 

  • Born C, Biselli M and Wandrey C (1995) Oxygen transfer from the gasphase to the immobilized cells in membrane aerated fluidized beds. Proceedings of the 8th meeting of JAACT, Iuzuka, Fukuoka, Japan (in press)

  • Brauer H (1971) Grundlagen der Einphasen-und Mehrphasenströmung. Verlag Sauerländer, Aarau and Frankfurt

    Google Scholar 

  • Chang HN and Moo-Young M (1988) Analysis of oxygen transport in immobilized whole cells. Bioreactor immobilized enzymes and cells: fundamentals and applications: 33–51, Elsevier applied science

  • Deckwer W-D (1985) Reaktionstechnik in Blasensäulen. Salle-Verlag, Sauerländer-Verlag, Aarau, Frankfurt, Salzburg

    Google Scholar 

  • Griffiths B (1990) Advances in animal cell immobilization technology. Animal Cell Biotechnology 4: 149–166

    Google Scholar 

  • Henzler HJ and Kauling DJ (1993) Oxygenation of cell cultures. Bioproc Eng 9: 61–75

    Article  CAS  Google Scholar 

  • Kennard ML and Piret JM (1994) Glycolipid membrane anchored recombinant protein production from CHO cells cultured on porous microcarriers. Biotech and Bioeng 44: 45–54

    Article  CAS  Google Scholar 

  • Kunii D and Levenspiel O (1969) Fluidization Engineering. RE Krieger publishing company, Malabar, Florida, USA

    Google Scholar 

  • Looby D and Griffiths JB (1990a) Immobilization of animal cells in porous carrier culture Tibtech 8: 204–209

    CAS  Google Scholar 

  • Looby D, Griffiths JB and Mistler M (1990b) Verfahrenstechnische Aspekte der Immobilisierung von Säugerzellkulturen auf offenporigen Sintergläsern in Festbett-und Fließbettreaktoren. Chem Ing Tech 62,No. 7: 566–568

    Article  Google Scholar 

  • Murdin AD, Kirkby NF, Wilson R and RE Spier (1988) Immobilized Hybridomas: Oxygen diffusion, Animal cell Biotech 3:55–74

    Google Scholar 

  • Nikolai TJ and Hu W-S (1992) Cultivation of mammalian cells on macroporous microcarriers. Enzyme Microb Technol 14,No. 3: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Özoguz G, Räbiger N and Baumgärtl H (1994) Membraneinsatz zur Erhöhung der Nitrifikationsleistung durch getrennte Substratversorgung, Bioforum 17: 129–135

    Google Scholar 

  • Preißmann A, Bux R, Schorn P and Noé W (1994) Comparative study of the propagation of anchorage-dependent cells using different forms of macroporous microcarrier. Poster presented at the 13th meeting of ESACT, Veldhoven, The Netherlands

  • Riethues M, Buchholz R, Onken U, Baumgärtl H and Lübbers DW (1986) Determination of oxygen transfer from single air bubbles to liquids by oxygen microelectrodes. Chem Eng Process 20: 331–337

    Article  CAS  Google Scholar 

  • Riquarts H-P (1981) Strömungsprofile, Impulsaustausch und Durchmischung der flüssigen Phase in Blasensäulen. Chem Ing Tech 53: 60 ff

    Article  Google Scholar 

  • Vournakis JN and Runstadler PW (1989) Microenvironment: The key to improved cell culture products. Biotechnology 7: 143–145

    Article  CAS  Google Scholar 

  • Werner RG, Merk W and Walz F (1988) Fermentation with immobilized cell cultures. Drug Res 38,No. 2: 320–325

    CAS  Google Scholar 

  • Westrin BA and Axelsson A (1991) Diffusion in gels containing immobilized cells: a critical review, Biotech and Bioeng 38: 439–446

    Article  CAS  Google Scholar 

  • Whitman WG (1923) The two film theory of gas absorption. Chem Metallurg Eng 29: 146–148

    CAS  Google Scholar 

  • Wiesmann R (1994) Einfluß der Immobilisierung auf den Stofftransport in biotechnischen Produktionsprozessen, in: Fortschrittsberichte, VDI-Reihe 17No. 113, VDI Verlag, Düsseldorf

    Google Scholar 

  • Wittler R, Baumgärtl H, Lübbers DW and Schügerl K (1986) Investigations of oxygen transfer into penicillium chrysogenum pellets by microprobe measurements, Biotechnol Bioeng 28: 1024–1036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preissmann, A., Wiesmann, R., Buchholz, R. et al. Investigations on oxygen limitations of adherent cells growing on macroporous microcarriers. Cytotechnology 24, 121–134 (1997). https://doi.org/10.1023/A:1007973924865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007973924865

Navigation