Skip to main content

Advertisement

Log in

Erythropoietin enhancer stimulates production of a recombinant protein by Chinese hamster ovary (CHO) cells under hypoxic condition

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Oxygen is a limiting nutrient in animal cell culture and its supply is still worthy of improvement for production of useful proteins with a high efficiency. From a different point of view, development of the system by which a high productivity can be maintained even under hypoxic condition as well as under normoxic condition may be important. A number of hypoxia-inducible genes have been found in eucaryotic cells and the induction in most cases, if not all, is due to hypoxic activation of the gene transcription. Transcription of erythropoietin gene is highly hypoxia-inducible and the induction is achieved by binding of a protein, which is widely distributed in animal cells, to a short DNA stretch (erythropoietin enhancer) in the 3′ flanking region of erythropoietin gene. Using a hepatoma cell line (Hep3B) that produces the endogenous erythropoietin in an oxygen-dependent manner and Chinese hamster ovary cells that have been widely used for production of recombinant proteins, we show that, under hypoxic condition, the erythropoietin enhancer can activate not only the promoter of erythropoietin gene but also promoters of cytomegalovirus early genes and eucaryotic polypeptide chain elongation factor gene, both of which are very active in animal cells under normoxic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck I, Ramirez S, Weinmann R and Caro J (1991) Enhancer element at the 3′-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem 266: 15563–15566.

    PubMed  CAS  Google Scholar 

  • Blanchard KL, Acquaviva AM, Galson DL and Bunn HF (1992) Hypoxic induction of the human erythropoietin gene: Cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 12: 5373–5385.

    PubMed  CAS  Google Scholar 

  • Bunn HF and Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885.

    PubMed  CAS  Google Scholar 

  • deWett JR, Wood KV, DeLuca M, Helinski DR and Subramani S (1987) Firefly luciferase gene: Structure and expression in mammalian cells. Mol Cell Biol 7: 725–737.

    Google Scholar 

  • Ebert, BL, Firth JD and Ratcliffe, PJ (1995) Hypoxia and mitochondrial inhibitors regulates expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem 270: 29083–29089.

    Article  PubMed  CAS  Google Scholar 

  • Eustice DC, Feldman PA, Colberg-Poley AA, Buckery RM and Neubauer RH (1991) A sensitive method for the detection of β-galactosidase in transfected mammalian cells. Bio Techniques 11: 739–743

    CAS  Google Scholar 

  • Firth JD, Ebert BL and Ratcliffe PJ (1995) Hypoxic regulation of lactate dehydrogenase A. J Biol Chem 270: 21021–21027.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD and Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613.

    PubMed  CAS  Google Scholar 

  • Galson DL, Tsuchiya T, Tendler DS, Huang LE, Ren Y, Ogura T and Bunn HF (1995) The orphan receptor hepatic nuclear factor 4 functions as transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol 15: 2135–2144.

    PubMed  CAS  Google Scholar 

  • Goldberg MA, Dunning SP and Bunn HF (1988) Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415.

    PubMed  CAS  Google Scholar 

  • Goto M, Murakami A, Akai K, Kawanishi G, Ueda M, Chiba H and Sasaki R (1989) Characterization and use of monoclonal antibodies directed against human erythropoietin that recognize different antigenic determinants. Blood 74: 1415–1423

    PubMed  CAS  Google Scholar 

  • Goto M, Akai K, Murakami A, Hashimoto C, Tsuda E, Ueda M, Kawanishi G, Takahashi N, Ishimoto A, Chiba H and Sasaki R (1988) Production of recombinant human erythropoietin in mammalian cells: Host-cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology 6: 67–71.

    Article  CAS  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449–489.

    PubMed  CAS  Google Scholar 

  • Kelly BD, Chiou TW, Rosenberg M and Wang DIC (1993): In: Rehm HJ, Reed G, Puhler A and Stadler P. (eds.) Industrial animal cell culture. Biotechnology, Vol. 3 (pp. 23–38) VCH, Weinheim.

    Google Scholar 

  • Krantz SB (1991) Erythropoietin. Blood 77: 419–434.

    PubMed  CAS  Google Scholar 

  • Madan A and Curtin PT (1993) A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci USA 90: 3928–3932.

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F Jr, Tabira T and Sasaki R (1993) Functional erythropoietin receptor of the cells with neural characteristics: Comparison with receptor properties of erythroid cells. J Biol Chem 268: 11208–11216.

    PubMed  CAS  Google Scholar 

  • Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M and Sasaki R (1994) A novel site of erythropoietin production: Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269: 19488–19493.

    PubMed  CAS  Google Scholar 

  • Masuda S, Chikuma M and Sasaki R (1997) Insulin-like growth factors and insulin stimulates erythropoietin production in primary cultured astrocytes. Brain Res (in press).

  • Matsumoto S, Ishii A, Ikura K, Ueda M and Sasaki R (1993) Expression of human erythropoietin in cultured tobacco cells. Biosci Biotech Biochem 57: 1249–1252

    Article  CAS  Google Scholar 

  • Maxwell PH, Pugh CW and Ratcliffe PJ (1993) Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 90: 2423–2427.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima S and Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18: 5322.

    PubMed  CAS  Google Scholar 

  • Morishita E, Masuda S, Nagao M, Yasuda Y and Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neurosci 76: 105–116.

    Article  CAS  Google Scholar 

  • Morishita E, Narita H, Nishida M, Kawashima N, Yamagishi K, Masuda S, Nagao M, Hatta H and Sasaki R (1996) Antierythropoietin receptor monoclonal antibody: Epitope mapping, quantification of the soluble receptor, and detection of the solubilized transmembrane receptor and the receptor-expressing cells. Blood 88: 465–471.

    PubMed  CAS  Google Scholar 

  • Nagao M, Masuda S, Ueda M and Sasaki R (1995) Erythropoietin processing in erythropoietic system and central nervous system. Cytotechnol 18: 83–91.

    Article  CAS  Google Scholar 

  • Nagao M, Ebert BL, Ratcliffe PJ and Pugh CW. Drosophila melanogaster SL2 cells contain a hypoxically inducible DNA binding complex which recognizes mammalian HIF-1 binding sites. FEBS Lett 387: 161–166.

  • Pugh CW, Tan CC, Jones RW and Ratcliffe PJ (1991) Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA 88: 10553–10557.

    Article  PubMed  CAS  Google Scholar 

  • Sambucetti LC, Cherrington JM, Wilkinson GWG and Mocarski ES (1989) NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J 8: 4251–4258.

    PubMed  CAS  Google Scholar 

  • Seiler-Tuyns A, Eldridge JD and Paterson BM (1984) Expression and regulation of chicken actin genes introduced into mouse myogenic and nonmyogenic cells. Proc Natl Acid Sci USA 81: 2980–2984

    Article  CAS  Google Scholar 

  • Semenza GL, Nejfelt MK, Chi SM and Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88, 5680–5684.

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL and Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454.

    PubMed  CAS  Google Scholar 

  • Semenza GL, Roth PH, Fang HM and Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269: 23757–23763.

    PubMed  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D and Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 2235–2243.

    Article  Google Scholar 

  • Stein I, Neeman M, Shweiki D, Itin A and Keshet E (1995) Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15: 5365–5368.

    Google Scholar 

  • Umesono K, Murakami KK, Thompson CC and Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D3 receptors. Cell 65: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Wang GL and Semenza GL (1993a) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268: 21513–21518.

    PubMed  CAS  Google Scholar 

  • Wang GL and Semenza GL (1993b) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90: 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  • Wang GL and Semenza GL (1993c) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction. Blood 82: 3610–3615.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, SK., Takeuchi, S., Kambe, T. et al. Erythropoietin enhancer stimulates production of a recombinant protein by Chinese hamster ovary (CHO) cells under hypoxic condition. Cytotechnology 25, 79–88 (1997). https://doi.org/10.1023/A:1007963800362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007963800362

Navigation