Skip to main content
Log in

Path Planning and Control of a Cooperative Three-Robot System Manipulating Large Objects

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

After a brief review of the current research on multi-robot systems, the paper presents a path planning and control scheme for a cooperative three-robot system transferring/manipulating a large object from an initial to a desired final position/orientation. The robots are assumed to be capable of holding the object at three points that define an isosceles triangle. The mode of operation adopted is that of a “master-and-two-slave robots”. The control scheme employs the differential displacement of the object which is transformed into that of the end-effector of each robotic arm, and then used to compute the differential displacements of the joints of the robots. The scheme was applied to several 3-robot systems by simulation and proved to be adequately effective, subject to certain conditions regarding the magnitude of the differential displacements. Here, an example is included which concerns the case of three Stäubli RX-90L robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freund, E. and Hoyer, H.: Collision avoidance in multi-robot systems, in: H. Hanafusa and H. Inoue (eds), Robotics Research: The Second Int. Symp., MIT Press, Cambridge, MA, 1985, pp. 135–146.

    Google Scholar 

  2. Alford, C. O. and Belyeu, S. M.: Coordinated control of two robot arms, in: Proc. IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, March 1984, pp. 468–473.

  3. Freund, E.: On the design of multirobot systems, in: Proc. IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, March 1984, pp. 477–490.

  4. Fujii, S. and Kurono, S.: Coordinated computer control of a pair of manipulators, in: Proc. 4th IFTOMM World Congress, Univ. of Newcastle, U.K., September 1975, pp. 411–417.

    Google Scholar 

  5. Zapata, R., Fournier, A., and Dauchez, P.: True cooperation of robots in multi-arms tasks, in: Proc. IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, 1987, pp. 1255–1260.

  6. Fortune, S., Wilfong, G., and Yap, C.: Coordinated motion of two robot arms, in: Proc. IEEE Int. Conf. on Robotics and Automation, San Fransisco, CA, 1986, pp. 1216–1223.

  7. Hoyer, H.: On-line collision avoidance for industrial robots, in: Proc. IFAC Symp. on Robot Control (SYROCO'85), Barcelona, Spain, 1985, pp. 477–485.

  8. Henrich, D. and Cheng, X.: Fast distance computation for on-line collision detection with multi-arm robots, in: Proc. IEEE Int. Conf. on Robotics and Automation, Nice, France, 1992, pp. 2514–2519.

  9. Tournassoud, P.:A strategy for obstacle avoidance and its application tomulti-robot systems, in: Proc. IEEE Int. Conf. on Robotics and Automation, San Fransisco, CA, 1986, pp. 1224–1229.

  10. Ishida, T.: Force control in coordination of two arms, in: Proc. 5th Int. Conf. on Artificial Intelligence, August 1977, pp. 411–415.

  11. Kim, K. I. and Zheng, Y. F.: Two strategies of position and force control for two industrial robots handling a single object, Robot. Autonom. Systems 5 (1989), 395–403.

    Google Scholar 

  12. Koivo, A. J.: Adaptive position-velocity-force control of two manipulators, in: Proc. 24th IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, December 1985, pp. 334–337.

  13. Koivo, A. J. and Bekey, G. A.: Report of workshop on coordinated multiple robot manipulators: Planning, control and applications, IEEE J. Robotics Automat. 4(1) (1988), 91–93.

    Google Scholar 

  14. Lim, J. and Ghyung, D. H.: On a control scheme for two cooperating robot arms, in: Proc. 24th IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, December 1985, pp. 334–337.

  15. Yoshikawa, T. and Zheng, X.: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling constrained objects, in: Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, Ohio, 1990, pp. 1178–1183.

  16. Su, S.: Coordinated control of multiple manipulator systems: Experimental results, in: Proc. 1992 Int. Conf. on Robotics and Automation, Nice, France, 1992, pp. 2199–2204.

  17. Schneider, S. A. and Cannon, R. H., Jr: Object impedance control for cooperative manipulation: theory and experimental results, IEEE J. Robotics Automat. 4(1) (1988), 91–93.

    Google Scholar 

  18. Paljug, E., Yun, X., and Kumar, V.: Control of rolling contacts inmultiple robotic manipulation, in: Proc. Int. Conf. on Advanced Robotics, Pisa, Italy, 1991, pp. 591–596.

  19. Paljug, E. and Yun, X.: Experimental study of two robot arms manipulating large objects, IEEE Trans. Control Systems Tech. 3(2) (1995), 177–188.

    Google Scholar 

  20. Zheng, Y. F. and Luh, J. Y. S.: Control of two coordinated robots in motion, in: Proc. IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, December 1985, pp. 1761–1764.

  21. Walker, M. W., Kim, D., and Dionise, J.: Adaptive coordinated motion control of two manipulator arms, in: Proc. 1989 Int. Conf. Robotics and Automation, Scottsdale, AZ, 1989, pp. 1084–1090.

  22. Li, Z., Hsu, P., and Sastry, S.: Dynamic coordination of a multiple robotic system with point contact, in: Proc. 1988 American Control Conf., Atlanta, GA, 1988, pp. 505–510.

  23. Kreutz, K. and Lokshin, A.: Load balance and closed chain multiple arm control, in: Proc. 1988 American Control Conf., Atlanta, GA, 1988, pp. 2148–2155.

  24. McClamroch, H. N. and Wang, D.: Feedback stabilization and tracking of constrained robots, IEEE Trans. Automat. Control 33(5) (1988), 419–426.

    Google Scholar 

  25. Nakamura, Y., Nagai, K., and Yoshikawa, T.: Mechanics of coordinative manipulation by multiple robotic mechanisms, in: Proc. 1987 IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, 1987, pp. 991–998.

  26. Hayati, S.: Hybrid position/force control of multi-arm cooperating robots, in: Proc. 1986 IEEE Int. Conf. Robotics and Automation, San Fransisco, CA, 1986, pp. 82–89.

  27. Uchiyama, M. and Dauchez, P.: A symmetric hybrid position/force control scheme for the coordination of two robots, in: Proc. 1988 IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, pp. 350–356.

  28. Pittelkau, M. E.: Adaptive load-sharing force control for two-arm-manipulators, in: Proc. 1988 IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, 1988, pp. 498–503.

  29. Orin, D. E. and Oh, S. Y.: Control of force distribution in robotic mechanisms containing closed kinematic chains, ASME J. Dyn. Syst. Meas. Control 103(2) (1981), 134–141.

    Google Scholar 

  30. Zheng, Y. F. and Luh, J. Y. S.: Optimal load distribution for two industrial robots handling a single object, in: Proc. 1988 IEEE Int. Conf. on Robotics and Automation, 1988, pp. 344–349.

  31. Cheng, F. T. and Orin, D. E.: Efficient algorithm for optimal force distribution – The compactdual LP method, IEEE Trans. Robotics Automat. 6(2) (1990), 178–187.

    Google Scholar 

  32. Choi, M. H., Ko, M. S., and Lee, B. H.: Optimal load distribution for two cooperating robots using force ellipsoid, Robotica 11 (1993), 61–72.

    Google Scholar 

  33. Choi, M. H. and Lee, B. H.: A real-time optimal load distribution for multiple cooperating robots, in: Proc. 1995 IEEE Conf. on Robotics and Automation, 1995, pp. 1211–1216.

  34. Lu, W. S. and Meng, Q. H.: An improved load distribution scheme for coordinating manipulators, in: Proc. 1993 IEEE Int. Conf. on Robotics and Automation, 1993, pp. 523–528.

  35. Klein, C. A. and Kittivatcharapong, S: Optimal force distribution for the legs of a walking machine with friction cone constraints, IEEE Trans. Robotics Automat. 6(1) (1990), 73–85.

    Google Scholar 

  36. Nahon, M. A. and Angeles, J.: Real-time force optimization in parallel kinematic chains under inequality constraints, IEEE Trans. Robotics Automat. 8(4) (1992), 439–450.

    Google Scholar 

  37. Luecke, G. R. and Gardner, J. F.: Experimental results for force distribution in cooperating manipulator systems using local joint control, Int. J. Robotics Res. 13(6) (1994), 471–480.

    Google Scholar 

  38. Kwon, W. and Lee, B. H.: Optimal force distribution of multiple cooperating robots using nonlinear programming dual method, in: Proc. IEEE Int. Conf. on Robotics and Automation, 1996, pp. 2408–2413.

  39. Unseren, M. A. and Koivo, A. J.: Reduced-order model and decoupled control architecture for two manipulators holding an object, in: Proc. 1989 IEEE Int. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp. 1240–1245.

  40. Unseren, M. A.: Rigid body dynamics and decoupled control architecture for two strongly interacting manipulators, Robotica 9(4) (1991), pp. 421–430.

    Google Scholar 

  41. Hsu, P, Li, Z., and Sastry, S.: On grasping and coordinated manipulation by a multifingered robot hand, in: Proc. 1988 IEEE Int. Conf. on Robotics and Automation, 1988, pp. 384–389.

  42. Wen, J. and Kreutz, K.: Motion and force control for multiple cooperative manipulators, in: Proc. IEEE Int. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp. 1246–1251.

  43. Dellinger, W. F. and Anderson, J. N.: Interactive force dynamics of two robotic manipulators grasping a nonrigid object, in: Proc. 1992 IEEE Int. Conf. on Robotics and Automation, 1992, pp. 2205–2210.

  44. Hayati, S. A.: Position and force control of coordinated multiple arms, IEEE Trans. Aerospace Electronic Systems 24(5) (1988), 584–590.

    Google Scholar 

  45. Ahmad, S. and Guo, H.: Dynamic Coordination of dual-arm robotic systems with joint flexibility, in: Proc. 1988 IEEE Int. Conf. on Robotics and Automation, 1988, pp. 332–337.

  46. Yun, X.: Object handling using two arms without grasping, Int. J. Robotics Res. 12(1) (1993), 99–106.

    Google Scholar 

  47. Yun, X.: Coordination of two-arm pushing, in: Proc. 1991 IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, 1991.

  48. Roach, J. W. and Boaz, M. N.: Coordinating the motions of robot arms in a common space, IEEE J. Robotics Automat. 3(5) (1987), 437–444.

    Google Scholar 

  49. Chung, W. and Waldron, K. J.: Force distribution by optimizing friction angles for multifinger system, in: Proc. 1993 IEEE Int. Conf. on Robotics and Automation, 1993, 717–722.

  50. Kerr, J. and Roth, B.: Analysis of multifingered hands, Int. J. Robotics Res. 4(4) (1986), 3–17.

    Google Scholar 

  51. Yun, X., Kumar, V., Sarkar, N., and Paljug, E.: Control of multiple arms with rolling constraints, in: Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, France, 1992.

  52. Tzafestas, S. G.: Digital PID and self tuning control, in: S. G. Tzafestas (ed.), Applied Digital Control, North-Holland, Amsterdam, 1985, pp. 1–49.

    Google Scholar 

  53. Tzafestas, S. G. and Pal, J. K. (eds): Real-Time Microcomputer Control of Industrial Processes, Kluwer, Dordrecht/Boston, 1991.

    Google Scholar 

  54. Mayorga, R. V. and Wong, A. K. C.: A robust method for the concurrent motion planning of multi-manipulators systems, J. Intell. Robotics Systems 19(1) (1997), 73–88.

    Google Scholar 

  55. Tzafestas, S. G. (ed.): Intelligent Robotic Systems, Marcel Dekker, New York, 1991.

    Google Scholar 

  56. Tzafestas, S. G., Stavrakakis, G., and Zagorianos, A.: Robot model reference adaptive control through lower/upper part dynamic decomposition, J. Intell. Robotic Systems 1 (1988), 163–184.

    Google Scholar 

  57. Stavrakakis, G., Zagorianos, A., and Tzafestas, S. G.: Combined Euler–Lagrange/Newton– Euler robot modelling and identification, in: S. G. Tzafestas, A. Eisenberg, and L. Carotenuto (eds), System Modelling and Simulation, North-Holland, 1989, pp. 209–220.

  58. Vukobratovic, M.: How to control robots interacting with dynamic environment, J. Intell. Robotic Systems 19 (1997), 119–152.

    Google Scholar 

  59. Tzafestas, S. G., Raibert, M., and Tzafestas, C. S.: Robust sliding-mode control applied to a 5-link biped robot, J. Intell. Robotic Systems 15(1) (1996), 67–133.

    Google Scholar 

  60. Tzafestas, S. G. and Prokopiou, P. A.: Compensation of teleoperator modeling uncertainties with a sliding-mode controller, Robotics and Computer Integrated Manufacturing 13(1) (1997), 9–20.

    Google Scholar 

  61. Slotine, J.-J. and Li, W.: Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzafestas, C.S., Prokopiou, P.A. & Tzafestas, S.G. Path Planning and Control of a Cooperative Three-Robot System Manipulating Large Objects. Journal of Intelligent and Robotic Systems 22, 99–116 (1998). https://doi.org/10.1023/A:1007943632269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007943632269

Navigation