Skip to main content
Log in

Blockade of Angiotensin Signaling Improves Myocardial Function in Hypercholesterolemia Independent of Changes in Eicosanoid Release

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

In hypercholesterolemia in the presence or absence of atherosclerosis, cardiovascular dysfunction and altered signaling of angiotensin, nitric oxide, or prostanoids are closely related to enhanced oxidant stress. We analyzed the potentially beneficial effects of the specific angiotensin-converting enzyme inhibitor enalapril and the specific angiotensin receptor blocker losartan on cardiac performance, eicosanoid metabolism, and parameters of oxidant stress in hypercholesterolemic animals. Guinea pigs were fed a 1% cholesterol diet for 8 weeks (Chol) with or without equieffective doses of either enalapril (1.5 mg/kg/d; Ena) or losartan (3 mg/kg/d; Los). Hemodynamics were analyzed in Langendorff hearts. Detection of eicosanoids was by enzyme immunoassay. Estimation of plasma xanthine oxidase (XO) activity was determined by spectrophotometry. In hypercholesterolemic guinea pigs, enhanced oxidant stress (e.g., increased plasma XO activities) was associated with profound myocardial and coronary (e.g., endothelial) dysfunction. Both enalapril and losartan lowered plasma cholesterol levels slightly, but only the angiotensin receptor antagonist effectively suppressed the increased plasma XO activities (from 11.4 ± 0.7 to 7.6 ± 2.2 U/L), and at the same time decreased the augmented coronary flow (from 26.0 ± 1.0 to 23.0 ± 1.0 mL/min/g tissue) observed in hypercholesterolemic animals. Assessment of left ventricular pressure and contractility (e.g., dp/dtmax) as well as the diastolic relaxation parameter (τ) revealed substantial myocardial dysfunction (systolic and diastolic) in Chol that was more substantially (and comparably) improved during administration of losartan (Los) than during enalapril (Ena). Surprisingly, angiotensin signaling blockade by either antagonist further suppressed the diminished coronary dilator responses to bradykinin (BK; not significant for enalapril) or adenosine (Ado) that was demonstrated in Chol Langendorff hearts [ΔCPPBK/Ado: from 5.0 ± 0.5/0.9 ± 0.1 to 4.4 ± 1.5/0.4 ± 0.1 (Ena) or to 1.9 ± 0.5/0.4 ± 0.1 (Los) cm2 (area under the curve), respectively]. Finally, as expected from control studies using heart preparations from normocholesterolemic guinea pigs, enhanced cardiac release of eicosanoids, prostacyclin, and thromboxane in Chol (0.48 ± 0.03 and 0.6 ± 0.1 ng/min/g) was augmented even further by treatment with enalapril (Ena: 1.6 ± 0.4 and 1.0 ± 0.1 ng/min/g), but was significantly reduced to or below control levels in losartan-treated animals (Los: 0.4 ± 0.1 and 0.2 ± 0.1 ng/min/g). Blockade of angiotensin signaling via angiotensin-converting enzyme inhibition or receptor antagonism—although differentially acting on enhanced cardiac prostanoid metabolism and oxidant stress—efficiently restored proper systolic and diastolic myocardial performance (losartan was more beneficial than enalapril), probably by counterbalancing altered angiotensin II → angiotensin receptor signaling in the cardiovascular system of hypercholesterolemic animals. Impaired coronary vasodilator capacity seems to be irreversible after 8 weeks of a high-cholesterol diet, as shown by the unexpected lack of a dilator effect with both enalapril and losartan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang BC, Phillips MI, Mohuczy D, et al. Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscl Thromb Vasc Biol 1998;18:1433-1439.

    Google Scholar 

  2. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952-959.

    Google Scholar 

  3. Nickenig G, Baumer AT, Grohe C, et al. Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 1998;97:2197-2201.

    Google Scholar 

  4. Shibata H, Suzuki H, Maruyama T, Saruta T. Gene expression of angiotensin II receptor in blood cells of Cushing's syndrome. Hypertension 1995;26:1003-1010.

    Google Scholar 

  5. Makarious M, Pawlak M, Campbell LV, et al. The platelet angiotensin II receptor in type I diabetes: Studies in patients with and without nephropathy. Eur J Clin Invest 1993;23:517-521.

    Google Scholar 

  6. Miyazaki H, Shibata T, Fujii N. [Intracellular signaling pathways of angiotensin II receptor type 1 involved in the development of cardiovascular diseases] [in Japanese]. Nippon Rinsho-Jpn J Clin Med 1998;56:1906-1911.

    Google Scholar 

  7. Hernandez A, Barberi L, Ballerio R, et al. Delapril slows the progression of atherosclerosis and maintains endothelial function in cholesterol-fed rabbits. Atherosclerosis 1998;137:71-76.

    Google Scholar 

  8. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141-1148.

    Google Scholar 

  9. Nickenig G, Jung O, Strehlow K, et al. Hypercholesterolemia is associated with enhanced angiotensin AT1-receptor expression. Am J Physiol 1997;272:H2701-H2707.

    Google Scholar 

  10. Nickenig G, Bohm M. Regulation of the angiotensin AT1 receptor expression by hypercholesterolemia. Eur J Med Res 1997;2:285-289.

    Google Scholar 

  11. Nickenig G, Bohm M. [Significance of the angiotensin-II receptor AT1 in the pathogenesis of arterial hypertension and arteriosclerosis] [in German]. D Med Wochenschr 1997;122:1009-1013.

    Google Scholar 

  12. Makaritsis KP, Gavras H, Du Y, Chobanian AV, Brecher P. Alpha1-adrenergic plus angiotensin receptor blockade reduces atherosclerosis in apolipoprotein E-deficient mice. Hypertension 1998;32:1044-1048.

    Google Scholar 

  13. de Zeeuw D, Gansevoort RT, de Jong PE. Losartan in patients with renal insufficiency. Can J Cardiol 1995; 11(Suppl. F):41F-44F.

    Google Scholar 

  14. Tazawa S, Nakane T, Chiba S. Angiotensin II type 1 receptor blockade prevents up-regulation of angiotensin II type 1A receptors in rat injured artery. J Pharmacol Exp Ther 1999;288:898-904.

    Google Scholar 

  15. Jacobsson LS, Persson K, Aberg G, Andersson RG, Karlberg BE, Olsson AG. Antiatherosclerotic effects of the angiotensin-converting enzyme inhibitors captopril and fosinopril in hypercholesterolemic minipigs. J Cardiovasc Pharmacol 1994;24:670-677.

    Google Scholar 

  16. Kowala MC, Grove RI, Aberg G. Inhibitors of angiotensin converting enzyme decrease early atherosclerosis in hyperlipidemic hamsters. Fosinopril reduces plasma cholesterol and captopril inhibits macrophage-foam cell accumulation independently of blood pressure and plasma lipids. Atherosclerosis 1994;108:61-72.

    Google Scholar 

  17. Mira ML, Silva MM, Queiroz MJ, Manso CF. Angiotensin converting enzyme inhibitors as oxygen free radical scavengers. Free Radical Res Commun 1993;19:173-181.

    Google Scholar 

  18. Sakemi T, Baba N, Yoshikawa Y. Angiotensin-converting enzyme inhibition attenuates hypercholesterolemia and glomerular injury in hyperlipidemic Imai rats. Nephron 1992;62:315-321.

    Google Scholar 

  19. de Cavanagh EM, Inserra F, Ferder L, Romano L, Ercole L, Fraga CG. Superoxide dismutase and glutathione peroxidase activities are increased by enalapril and captopril in mouse liver. FEBS Lett 1995;361:22-24.

    Google Scholar 

  20. Keidar S, Attias J, Smith J, Breslow JL, Hayek T. The angiotensin-II receptor antagonist, losartan, inhibits LDL lipid peroxidation and atherosclerosis in apolipoprotein Edeficient mice. Biochem Biophys Res Comm 1997;236:622-625.

    Google Scholar 

  21. Tayeh MA, Scicli AG. Angiotensin II and bradykinin regulate the expression of P-selectin on the surface of endothelial cells in culture. Proc Assoc Am Phys 1998;110:412-421.

    Google Scholar 

  22. Davies KJ. Oxidative stress: The paradox of aerobic life. Biochem Soc Symp 1995;61:1-31.

    Google Scholar 

  23. Rattan V, Sultana C, Shen Y, Kalra VK. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Physiol 1997;273:E453-E461.

    Google Scholar 

  24. Kaplowitz N, Fernandez-Checa JC, Kannan R, Garcia-Ruiz C, Ookhtens M, Yi JR. GSH transporters: Molecular characterization and role in GSH homeostasis. Biol Chem Hoppe-Seyle 1996;377:267-273.

    Google Scholar 

  25. Kurose I, Wolf RE, Grisham MB, Granger DN. Hypercholesterolemia enhances oxidant production in mesenteric venules exposed to ischemia/reperfusion. Arterioscler Thromb Vasc Biol 1998;18:1583-1588.

    Google Scholar 

  26. Davi G, Alessandrini P, Mezzetti A, et al. In vivo formation of 8-epi-prostaglandin F2 alpha is increased in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1997;17:3230-3235.

    Google Scholar 

  27. Ma XL, Lopez BL, Liu GL, et al. Hypercholesterolemia impairs a detoxification mechanism against peroxynitrite and renders the vascular tissue more susceptible to oxidative injury. Circ Res 1997;80:894-901.

    Google Scholar 

  28. Simon E, Paul JL, Atger V, Simon A, Moatti N. Erythrocyte antioxidant status in asymptomatic hypercholesterolemic men. Atherosclerosis 1998;138:375-381.

    Google Scholar 

  29. Wilcox JN, Subramanian RR, Sundell CL, et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1997;17:2479-2488.

    Google Scholar 

  30. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 1996;93:9114-9119.

    Google Scholar 

  31. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993;91:2546-2551.

    Google Scholar 

  32. Harrison DG. Endothelial dysfunction in atherosclerosis. Basic Res Cardiol 1994;89(Suppl. 1):87-102.

    Google Scholar 

  33. Kooy NW, Lewis SJ. The peroxynitrite product 3-nitro-L-tyrosine attenuates the hemodynamic responses to angiotensin II in vivo. Eur J Pharmacol 1996;315:165-170.

    Google Scholar 

  34. Blann AD, Maxwell SR, Burrows G, Miller JP. Antioxidants, von Willebrand factor and endothelial cell injury in hypercholesterolaemia and vascular disease. Atherosclerosis 1995;116:191-198.

    Google Scholar 

  35. Wohlfeil ER, Campbell WB. 25-Hydroxycholesterol enhances eicosanoid production in cultured bovine coronary artery endothelial cells by increasing prostaglandin G/H synthase-2. Biochim Biophys Acta 1997;1345:109-120.

    Google Scholar 

  36. Davi G, Gresele P, Violi F, et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997;96:69-75.

    Google Scholar 

  37. Weber AA, Hohlfeld T, Strobach H, Schrör K, Schrör K. Oral naftidrofuryl prevents platelet hyperreactivity ex vivo and inhibits functional desensitization to prostacyclin in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 1993;21:332-338.

    Google Scholar 

  38. Kaul S, Waack BJ, Padgett RC, Brooks RM, Heistad DD. Altered vascular responses to platelets from hypercholesterolemic humans. Circ Res 1993;72:737-743.

    Google Scholar 

  39. Bailey JM, Makheja AN, Lee R, Simon TH. Systemic activation of 15-lipoxygenase in heart, lung, and vascular tissues by hypercholesterolemia: Relationship to lipoprotein oxidation and atherogenesis. Atherosclerosis 1995;113:247-258.

    Google Scholar 

  40. Lynch SM, Gaziano JM, Frei B. Ascorbic acid and atherosclerotic cardiovascular disease. Sub-Cellular Biochem 1996;25:331-367.

    Google Scholar 

  41. Sullivan MP, Cerda JJ, Robbins FL, Burgin CW, Beatty RJ. The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab Animal Sc 1993;43:575-578.

    Google Scholar 

  42. Fitzgerald GA, Smith B, Pedersen AK, Brash AR. Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 1984;310:1065-1068.

    Google Scholar 

  43. Bergmeyer HU. Methods of Enzymatic Analysis, Vol. III. Enzymes 1: Oxidoreductases, Transferases, 3rd ed. Weinheim: Verlag Chemie, 1963.

    Google Scholar 

  44. Asano K, Dutcher DL, Port JD, et al. Selective downregulation angiotensin II AT(1)-receptor subtype in failing human ventricular myocardium. Circulation 1997;96:4435.

    Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with phenol reagent. J Biol Chem 1951;193:265-275.

    Google Scholar 

  46. Galle J, Busse R, Bassenge E. Hypercholesterolemia and atherosclerosis change vascular reactivity in rabbits by different mechanisms. Arterioscl Thromb 1991;11:1712-1718.

    Google Scholar 

  47. Cardillo C, Kilcoyne CM, Cannon RO, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997;30:57-63.

    Google Scholar 

  48. Mügge A, Brandes RP, Böger RH, et al. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 1994;24:994-998.

    Google Scholar 

  49. White CR, Darley-Usmar V, Berrington WR, et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA 1996;93:8745-8749.

    Google Scholar 

  50. Janssen M, de Jong JW, Pasini E, Ferrari R. Myocardial xanthine oxidoreductase activity in hypertensive and hypercholesterolemic rats. Cardioscience 1993;4:25-29.

    Google Scholar 

  51. Keane WF, Shapiro BE. Renal protective effects of angiotensin-converting enzyme inhibition. Am J Cardiol 1990;65:49I-53I.

    Google Scholar 

  52. Bartosz M, Kedziora J, Bartosz G. Antioxidant and prooxidant properties of captopril and enalapril. Free Radical Biol Med 1997;23:729-735.

    Google Scholar 

  53. Djordjevic VB, Pavlovic D, Pejovic M, Cvetkovic T, Lecic N, Deljanin-Ilic M. Changes of lipid peroxides and antioxidative factors levels in blood of patients treated with ACE inhibitors. Clin Nephr 1997;47:243-247.

    Google Scholar 

  54. de Cavanagh EM, Fraga CG, Ferder L, Inserra F. Enalapril and captopril enhance antioxidant defenses in mouse tissues. Am J Physiol 1997;272:R514-R518.

    Google Scholar 

  55. Haller H, Oeney T, Hauck U, Distler A, Philipp T. Increased intracellular free calcium and sensitivity to angiotensin II in platelets of preeclamptic women. Am J Hypertens 1989;2:238-243.

    Google Scholar 

  56. Zhang Z, Blake DR, Stevens CR, et al. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: The role of NADH as an electron donor. Free Radical Res 1998;28:151-164.

    Google Scholar 

  57. Baur LH, Schipperheyn JJ, Baan J, et al. Influence of angiotensin converting enzyme inhibition on pump function and cardiac contractility in patients with chronic congestive heart failure. Br Heart J 1991;65:137-142.

    Google Scholar 

  58. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension 1997;29:519-524.

    Google Scholar 

  59. Gohlke P, Linz W, Scholkens BA, Wiemer G, Unger T. Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension 1996;28:397-402.

    Google Scholar 

  60. Werrmann JG, Cohen SM. Use of losartan to examine the role of the cardiac renin-angiotensin system in myocardial dysfunction during ischemia and reperfusion. J Cardiovasc Pharmacol 1996;27:177-182.

    Google Scholar 

  61. Sudhir K, MacGregor JS, Gupta M, et al. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo: Intravascular two-dimensional and Doppler ultrasound studies. Circulation 1993;87:931-938.

    Google Scholar 

  62. Kyriakidis M, Triposkiadis F, Dernellis J, et al. Effects of cardiac versus circulatory angiotensin-converting enzyme inhibition on left ventricular diastolic function and coronary bloodflowin hypertrophic obstructive cardiomyopathy. Circulation 1998;97:1342-1347.

    Google Scholar 

  63. Wagner OF, Christ G, Wojta J, et al. Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 1992;267:16066-16068.

    Google Scholar 

  64. Vicaut E. Hypertension and the microcirculation: A brief overview of experimental studies. J Hypertens 1992;10(Suppl. 5):S59-S68.

    Google Scholar 

  65. Dumoulin MJ, Adam A, Blais CJ, Lamontagne D. Metabolism of bradykinin by the rat coronary vascular bed. Cardiovasc Res 1998;38:229-236.

    Google Scholar 

  66. Tio RA, Van Wijngaarden J, Scholtens E, van Gilst WH, de Langen CD, Wesseling H. The increase in coronary flow induced by converting enzyme inhibitors is prostacyclin independent. Prog Clin Biol Res 1989;301:435-439.

    Google Scholar 

  67. Umemura K, Wada K, Suzuki Y, Nishiyama H, Nakashima M. Altered prostaglandin metabolism induced by angiotensin-converting enzyme inhibitors in bronchoalveolar lavage fluid of the guinea pig. Jpn J Pharmacol 1996;72:17-21.

    Google Scholar 

  68. Harding P, Stonier C, Aber GM. Dose-dependent effects of angiotensin converting enzyme (ACE) inhibitors on glomerular prostanoid production by normotensive rats. Br J Pharmacol 1993;108:327-330.

    Google Scholar 

  69. Catalioto RM, Porchia R, Renzetti AR, Criscuoli M, Subissi A, Giachetti A. Angiotensin II-induced responses in vascular smooth muscle cells: Inhibition by non-peptide receptor antagonists. Eur J Pharmacol 1995;280:285-292.

    Google Scholar 

  70. Leung KH, Chang RS, Lotti VJ, et al. AT1 receptors mediate the release of prostaglandins in porcine smooth muscle cells and rat astrocytes. Am J Hypertens 1992;5:648-656.

    Google Scholar 

  71. Sadoshima J, Izumo S. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ Res 1993;73:424-438.

    Google Scholar 

  72. Becker BN, Cheng HF, Harris RC. Apical ANG IIstimulated PLA2 activity and Na+ flux: A potential role for Ca2+-independent PLA2. Am J Physiol 1997;273:F554-F562.

    Google Scholar 

  73. Mangat H, Peterson LN, Burns KD. Hypercalcemia stimulates expression of intrarenal phospholipase A2 and prostaglandin H synthase-2 in rats. Role of angiotensin II AT1 receptors. J Clin Invest 1997;100:1941-1950.

    Google Scholar 

  74. Lokuta AJ, Cooper C, Gaa ST, Wang HE, Rogers TB. Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem 1994;269:4832-4838.

    Google Scholar 

  75. Boger RH, Bode-Böger SM, Brandes RP, et al. Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: Comparison with lovastatin. Circulation 1997;96:1282-1290.

    Google Scholar 

  76. Simonet S, Porro dBJ, Descombes JJ, Mennecier P, Laubie M, Verbeuren TJ. Hypoxia causes an abnormal contractile response in the atherosclerotic rabbit aorta. Implication of reduced nitric oxide and cGMP production. Circ Res 1993;72:616-630.

    Google Scholar 

  77. Weisbrod RM, Griswold MC, Du Y, Bolotina VM, Cohen RA. Reduced responsiveness of hypercholesterolemic rabbit aortic smooth muscle cells to nitric oxide. Art Thromb Vasc Biol 1997;17:394-402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwemmer, M., Sommer, O. & Bassenge, E. Blockade of Angiotensin Signaling Improves Myocardial Function in Hypercholesterolemia Independent of Changes in Eicosanoid Release. Cardiovasc Drugs Ther 14, 317–327 (2000). https://doi.org/10.1023/A:1007838809551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007838809551

Navigation