Skip to main content
Log in

Disproportional Response between Refractory Period and Blood Flow to α1- and β-Adrenoceptor Blockade in Canine Ischemic Myocardium

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

We investigated the response of refractory periods and blood flow to blockade of α1- and β-adrenoceptors alone, or in combination on endocardium and epicardium, during myocardial ischemia. Dogs were anesthetized with α-chloralose and divided into bunazosin (an α1-blocking agent)-treated (0.1–0.2 mg/kg, IV, n = 14), propranolol-treated (0.2 mg/kg, IV, n = 12), and vehicle-control (n = 10) groups. The diagonal branches of the left anterior descending artery were ligated. The refractory period (ERP) and blood flow (RMBF) were determined by an S1-S2 extrastimulus method and a nonradioactive microsphere technique, respectively. The duration of regional electrograms (DRE) was measured in the endocardial and epicardial sites. Bunazosin alone reversed the ischemia-related shortening of ERPs at both the endocardial and epicardial sites, with a greater effect seen epicardially (P < .05). Subsequent administration of propranolol further prolonged ERPs in both sites, although the effect was greater in the epicardial surface (P < .05). Bunazosin reduced RMBF to a greater degree at the endocardial site than at the epicardial site in the ischemic zone (P < .01 and P < .05, respectively), but the magnitude of the reduction in RMBF and the difference in RMBF between sites were similar to the control group (P < .01). Propranolol alone and subsequent administration of bunazosin prolonged the ERP more at the epicardial site (P < .01) than at the endocardial sites in the ischemic zone. Propranolol produced no significant difference in RMBF between both sites. DREs in animals treated with bunazosin and propranolol alone, or in combination, were similar to those in animals treated with vehicle. These results suggest that differences in ERPs between endocardium and epicardium with blockade of α1- and/or β-adrenoceptor are not due to concomitant alterations in RMBF, but to differences in electrophysiological properties of the endocardial and epicardial cells during the acute phase of myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taggart P, Sutton PM, Spear DW, Drake HF, Swanton RH, Emanuel RW. Simultaneous endocardial and epicardial monophasic action potential recordings during brief periods of coronary artery ligation in the dog: Influence of adrenaline, beta blockade and alpha blockade. Cardiovasc Res 1988; 22:900-990.

    PubMed  Google Scholar 

  2. Kimura S, Bassett AL, Kohya T, Kozlosvkis P, Myerburg RJ. Simultaneous recording of action potentials from endocardium and epicardium during ischemia in the isolated cat ventricle: Relation of temporal electrophysiologic heterogeneities to arrhythmia. Circulation 1986;74:401-409.

    PubMed  Google Scholar 

  3. Tanabe T, Usui K, Kusuzaki S, Yoshitake M, Takigawa O, Iwamoto T, Handa S. Differences in refractory-period response of canine subendocardium and subepicardium to bunazosin, an α 1-adrenoceptor antagonist, and propranolol during myocardial ischemia. J Cardiovasc Pharmacol 1997; 30:824-830.

    Article  PubMed  Google Scholar 

  4. va Dam RT, Durrer D. Experimental study on the intramural distribution of the excitability cycle and on the form of the epicardial T wave in the dog heart in situ. Am Heart J 1961;61:537-542.

    Article  PubMed  Google Scholar 

  5. Burgess MJ, Green LS, Millar K, Wyatt R, Abildskov JA. The sequence of normal ventricular recovery. Am Heart J 1972;84:660-669.

    Article  PubMed  Google Scholar 

  6. Ceremuzynski L, Staszewska-Barczak L, Herbaczynska-Cedro K. Cardiac rhythm disturbance and the release of catecholamines after coronary occlusion in dogs. Cardiovasc Res 1969;3:190-197.

    PubMed  Google Scholar 

  7. Dahlstrom A, Fuxe F, Mya-Tu M, Zetterstrom BEM. Observations on adrenergic innervation of the dog heart. Am J Physiol 1965;209:689-692.

    PubMed  Google Scholar 

  8. Litovsky SH, Antzelevitch C. Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 1990;67:615-627.

    PubMed  Google Scholar 

  9. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB. Alpha adrenergic contributions to dysrhythmias during myocardial ischemia and reperfusion in cats. J Clin Invest 1980; 65:161-171.

    PubMed  Google Scholar 

  10. Benfey BG, Elfellah MS, Ogilvie Rl, Varma DR. Antiarrhythmic effects of prazosin and propranolol during coronary artery occlusion and re-perfusion in dogs and pigs. Br J Pharmacol 1984;82:717-725.

    PubMed  Google Scholar 

  11. Wilber DJ, Lynch JJ, Lucchesi BR. Electrophysiologic effects of prazosin during acute myocardial ischemia. Eur J Pharmacol 1985;127:157-161.

    Article  Google Scholar 

  12. Tanabe T, Takahashi K, Usui K, Kitada M, Mori H. Effects of bunazosin, a selective α-blocking agent, and propranolol used alone and in combination on canine ventricular refractoriness and its dispersion during myocardial ischemia. J Cardiovasc Pharmacol 1993;21:600-608

    PubMed  Google Scholar 

  13. Tanabe T, Takahashi K, Kitada M,Yoshioka K, Handa S, Mori H. Effect of sympathetic stimulation, with and without previous α 1 and β adrenocepter blockade, on refractoriness dispersion in canine heart. Cardiovasc Res 1994;28: 1787-1793.

    PubMed  Google Scholar 

  14. Becker LC, Fortuin NJ, Pitt B. Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res 1971; 28:263-269.

    PubMed  Google Scholar 

  15. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 1978; 234:H653-H659.

    PubMed  Google Scholar 

  16. Melby K, Bache RJ. Effect of selective beta-adrenergic blockade and stimulation on regional myocardial blood flow following acute coronary artery occlusion in the awake dog. Cardiovasc Res 1980;14:192-198.

    PubMed  Google Scholar 

  17. Thuillez C, Berdeaux A, Bonhenry C, Duhaze P, Giudicelli JF. Effects of propranolol on regional myocardial blood flow and function during severe coronary stenosis in dogs. Eur J Pharmacol 1983;92:171-179.

    Article  PubMed  Google Scholar 

  18. Obeid AI, Smulyan H, Eich RH. Effects of stellate stimulation and hypoxia on haemodynamics and coronary circulation. Cardiovasc Res 1971;5:506-512.

    PubMed  Google Scholar 

  19. Mudge GH, Grossman W, Mills RM, Lesch M, Braunwald E. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 1976;295: 1333-1337

    PubMed  Google Scholar 

  20. Huang AH, Feigl EO. Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 1988;62:286-298.

    PubMed  Google Scholar 

  21. Guth BD, Miura T, Thaulow E, Heusch G, Ross J, Jr. Alpha1-adrenergic blockade reduces exercise-induced regional myocardial ischemia in dogs. Basic Res Cardiol 1993;88:282-296.

    PubMed  Google Scholar 

  22. Laxson DD, Dai X-Z, Homans DC, Bache RJ. The role of alpha 1-and alpha 2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 1989;65:1688-1697.

    PubMed  Google Scholar 

  23. Morita Y, Hosier KE, Lorenz V, Kaufman L, Mori H, Hoffman JIE. A low background X-ray fluorescence system for microsphere quantitation. IEEE Trans Nucl Sci 1988;35: 691-697.

    Article  Google Scholar 

  24. Morita Y, Payne BD, Aldea GS, et al. Local blood flow measured by fluorescence excitation of nonradioactive microspheres. Am J Physiol 1990ℛ8 (Heart Circ Physiol 27): H1573-H1584.

    Google Scholar 

  25. Mori H, Haruyama S, Shinozaki Y, et al. New nonradioactive microspheres and more sensitive X-ray fluorescence to measure regional blood flow. Am J Physiol 1992;263(Heart Circ Physiol 32):H1946-H1957.

    PubMed  Google Scholar 

  26. Shoji T. Comparison of pre-and postsynaptic α-adrenoceptor blocking effects of E-643 in the isolated vas deferens of the rat. Jpn J Pharmacol 1981;31:361-368.

    PubMed  Google Scholar 

  27. Hata F, Kondo E, Kondo S, Kagawa K, Ishida H. Characteristics of [3H]E-643-binding to alpha adrenoceptors. Jpn J Pharmacol 1982;32:181-187.

    PubMed  Google Scholar 

  28. Billman GE. Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischemia. Cardiovasc Res 1994: 28:752-769.

    Google Scholar 

  29. Sheridan DJ, Culling W. Electrophysiological effects of α-adrenoceptor stimulation in normal and ischemic myocardium. J Cardiovasc Pharmacol 1985;7(Suppl. 5):S55–S60.

    PubMed  Google Scholar 

  30. Talajic M, Villemaire C, Nattel S. Electrophysiological effects of alpha-adrenergic stimulation. PACE 1990;13: 578-582.

    PubMed  Google Scholar 

  31. Feigl EO. Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circ Res 1975;37:88-95.

    PubMed  Google Scholar 

  32. Mohrman DE, Feigl EO. Competition between sympathetic vasoconstriction in the canine coronary circulation. Circ Res 1978;42:79-86.

    PubMed  Google Scholar 

  33. Buffington CW, Feigl EO. Adrenergic coronary vasoconstriction in the presence of coronary stenosis in dogs. Circ Res 1981;48:416-423.

    PubMed  Google Scholar 

  34. Nathan HJ, Feigle EO. Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 1986;250:H645-H653.

    PubMed  Google Scholar 

  35. Chilian WM, Ackell PH. Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 1988;62:216-225.

    PubMed  Google Scholar 

  36. Baumgart D, Ehring T, Kowallik P, Guth BD, Krajcar M, Heusch G. Impact of α-adrenergic coronary vasoconstriction on the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 1993;73:869-886.

    PubMed  Google Scholar 

  37. Heusch G. Alpha-adrenergic mechanisms in myocardial ischemia. Circulation 1990;81:1-13.

    PubMed  Google Scholar 

  38. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation of the ventricle. Circ Res 1966;18:416-428.

    PubMed  Google Scholar 

  39. Martins JB, Zipes DP. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 1980;46: 100-110.

    PubMed  Google Scholar 

  40. Karlsberg RP, Penkoske PA, Cryer PE, Corr PB, Roberts R. Rapid activation of the sympathetic nervous system following coronary artery occlusion: Relationship to infarct size, site and hemodynamic impact. Cardiovasc Res 1979; 13:523-531.

    PubMed  Google Scholar 

  41. Nakamura S, Kiyosue T, Arita M. Glucose reverses 2,4-dinitrophenol induced changes in action potentials and membrane currents of guinea pig ventricular cells via enhanced glycolysis. Cardiovasc Res 1989;23:286-294.

    PubMed  Google Scholar 

  42. Deutsch N, Klitzner TS, Lamp ST, Weiss JN. Activation of cardiac ATP-sensitive K; + current during hypoxia: Correlation with tissue ATP levels. Am J Physiol 1991;261: H671-H676.

    PubMed  Google Scholar 

  43. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ. Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res 1991;68:1693-1702.

    PubMed  Google Scholar 

  44. Wilde AAM, Veldkamp MW, van Ginneken ACG, Opthof T. Phentolamine blocks ATP sensitive potassium channels in cardiac ventricular cells. Cardiovasc Res 1994;28:847-50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, K., Tanabe, T., Handa, S. et al. Disproportional Response between Refractory Period and Blood Flow to α1- and β-Adrenoceptor Blockade in Canine Ischemic Myocardium. Cardiovasc Drugs Ther 12, 561–571 (1998). https://doi.org/10.1023/A:1007739421023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007739421023

Navigation