Skip to main content
Log in

Physicochemical Changes in HDL3 after Bezafibrate Treatment: Influence on Free Cholesterol Efflux from Human Fibroblasts

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The effects of bezafibrate, a well-used fibric acid hypolipidemic agent, were investigated in 10 moderately hypertriglyceridemic patients. The aim was to quantify the physico-chemical modifications to high-density lipoprotein subfraction 3 (HDL3) induced by treatment and to assess, in vitro, the alterations in its principal physiological function, the efflux of intracellular free cholesterol. Treatment (200mg/thrice/d for 3 months) resulted in a 48% decrease in plasma triglycerides, with an increase in the HDL cholesterol, due mainly to an increase in the HDL3 (P < 0.01). Composition analysis of HDL3indicated an increase in cholesterol esters (P < 0.01), free cholesterol (P < 0.01), and phospholipids (P < 0.01), coupled with a decrease in the protein content of the molecule compared with pretreatment values. Fluorescense anisotropy at 24°C was significantly higher post-treatment than pretreatment (P < 0.01). The cholesterol effluxing capacity of pretreatment HDL3 was 28%, and post-treatment this increased to 50% (P < 0.01). Multivariate analyses indicated that the increased capacity of HDL3 to promote free cholesterol efflux was, in part, due to increased HDL3 phospholipid content and a more adequate fluidity of the molecule. These findings suggest that bezafibrate induces a lowering of plasma triglycerides and that the resultant physico-chemical alterations of the HDL3 molecule make it more efficient as an acceptor of intracellular free cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglycerides and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Circulation 1992;85:37–45.

    PubMed  CAS  Google Scholar 

  2. Assmann G, Schulte H. Relation of high density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol 1992;70:733–737.

    Article  PubMed  CAS  Google Scholar 

  3. Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum RJ. Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia. Reversal towards normal with bezafibrate treatment. J Clin Invest 1984;74:470–482.

    PubMed  CAS  Google Scholar 

  4. Hunninghake DB, Peters JR. Effect of fibric acid derivatives on blood lipid and lipoprotein levels. Am J Med 1987;83:44–49.

    Article  PubMed  CAS  Google Scholar 

  5. Deckelbaum RJ, Shipley GG, Small DM. Structure and interactions of lipids in human plasma low density lipoprotein. J Biol Chem 1977;252:744–754.

    PubMed  CAS  Google Scholar 

  6. Solà R, Baudet MF, Motta C, Maillé M, Bosnier C, Jacotot B. Effects of dietary fats on the fluidity of human high-density lipoprotein: Influence of the overall composition and phospholipid fatty acids. Biochim Biophys Acta 1990;1043:43–51.

    PubMed  Google Scholar 

  7. Solà R, Motta C, Maillé M, et al. Dietary monounsaturated fatty acids enhance cholesterol efflux from fibroblasts. Relation to fluidity, phospholipid fatty acid composition, overall composition and size of HDL3. Arterioscler Thromb 1993;13:958–966.

    PubMed  Google Scholar 

  8. La Ville AE, Sola R, Balanya J, Turner PR, Masana L. In vitro oxidised HDL is recognised by the scavenger receptor of macrophages: Implications for its protective role in vivo. Atherosclerosis 1994;105:179–189.

    Article  PubMed  CAS  Google Scholar 

  9. Shumaker UN, Pupione DL. Sequential flotation ultracentrifugation. Methods Enzymol 1986;128:155–170.

    Google Scholar 

  10. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951;193:265–275.

    PubMed  CAS  Google Scholar 

  11. Shinitzky M, Yuli I. Lipid fluidity at the submacroscopic level: Determination by fluorescence polarization. Chem Phys Lipids 1982;30:261–282.

    Article  CAS  Google Scholar 

  12. Lentz BR, Moore BM, Barrow DA. Light-scattering effects in the measurement of membrane microviscosity with diphenylhexatriene. Biophys J 1979;25:489–494.

    Article  PubMed  CAS  Google Scholar 

  13. Eisinger J, Flores J. Fluorometry of turbid and absorbant samples and the membrane fluidity of intact erythrocytes. Biophys J 1985;48:77–84.

    PubMed  CAS  Google Scholar 

  14. Grunberger D, Haimmovitz R, Shinitzky M. Resolution of plasma membrane fluidity in intact cells labelled with diphenylhexatriene. Biochim Biophys Acta 1982;688:764–774.

    Article  PubMed  CAS  Google Scholar 

  15. Brown MS, Ho YK, Goldstein JL. The cholesterol ester cycle in macrophages foam cells: Continual hydrolysis and reesterification of cytoplasmic cholesterol esters. J Biol Chem 1980;255:9344–9352.

    PubMed  CAS  Google Scholar 

  16. Stein Y, Glangeaud MC, Fainaru M, Stein O. The removal of cholesterol from aortic smooth muscle cells in cultured and Landschutz ascites cells by fractions of human high-density apolipoprotein. Biochim Biophys Acta 1975;380:106–118.

    PubMed  CAS  Google Scholar 

  17. Esteva O, Baudet MF, Lasserre M, Jacotot B. Influence of the fatty acid composition of high density lipoprotein phospholipids on the cholesterol efflux from cultured fibroblasts. Biochin Biophys Acta 1986;875:174–182.

    CAS  Google Scholar 

  18. Rothblath GH, Bamberger M, Phillips MC. Reverse cholesterol transport. Methods Enzymol 1986;129:628–644.

    Article  Google Scholar 

  19. Dole VP. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 1955;35:150–154.

    Google Scholar 

  20. Bates SR, Rothblat TH. Regulation of cellular sterol flux and synthesis by human serum proteins. Biochem Biophys Acta 1974;360:38–55.

    PubMed  CAS  Google Scholar 

  21. Norusis MJ. SPSS/PC + for the IBM PC/XT/AT. Chicago, IL, SPSS Inc., 1986.

    Google Scholar 

  22. Oram JF. Effects of high density lipoprotein subfractions on cholesterol homeostasis in human fibroblasts and arterial smooth muscle cells. Arteriosclerosis 1983;3:420–432.

    PubMed  CAS  Google Scholar 

  23. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996;347:849–853.

    Article  PubMed  CAS  Google Scholar 

  24. Fournier N, de la Llera M, Burkey M, et al. Role of HDL phospholipid in efflux of cell cholesterol to whole serum: Studies with human apoA-I transgenic rats. J Lipid Res 1996;37:1704–1711.

    PubMed  CAS  Google Scholar 

  25. Stein O, Fainaru M, Stein Y. The role of lysophosphatidyl-choline and apolipoprotein A in the cholesterol-removing capacity of lipoprotein-deficient serum in tissue culture. Biochim Biophys Acta 1979;574:495–504.

    PubMed  CAS  Google Scholar 

  26. Fielding PE, Kawano M, Catapano AL, Zoppo A, Marcovina S, Fielding CJ. Unique epitope of apo A-I expressed in pre-β high density lipoprotein and its role in the catalysed efflux of cellular cholesterol. Biochemistry 1994;33:6981–6985.

    Article  PubMed  CAS  Google Scholar 

  27. Davidson WS, Gillote KL, Lund-Katz S, Johnson WJ, Rothblat GH, Phillips MC. The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. J Biol Chem 1995;270:5882–5890.

    Article  PubMed  CAS  Google Scholar 

  28. Vitello LB, Scanu AM. Studies on human high density lipoprotein. Self-association of apolipoprotein A-I in aqueous solutions. J Biol Chem 1976;251:1131–1136.

    PubMed  CAS  Google Scholar 

  29. Homma Y, Ozawa H, Kobayashi T, Yamaguchi H, Sakane H, Mikami Y, Nakamura H. Effects of bezafibrate therapy on subfractions of plasma low-density lipoprotein and high-density lipoprotein, and on activities of lecithin:cholesterol acyltranferase and cholesteryl ester transfer protein in patients with hyperlipoproteinemia. Atherosclerosis 1994;106:191–201.

    Article  PubMed  CAS  Google Scholar 

  30. Brinton EA, Oram JF, Bierman EL. The effect of variations in lipid composition of high-density lipoprotein on its interaction with receptors on human fibroblasts. Biochim Biophys Acta 1987;920:68–75.

    PubMed  CAS  Google Scholar 

  31. Shinitzky M. Membrane fluidity in malignancy adversative and recuperative. Biochim Biophys Acta 1984;738:251–261.

    PubMed  CAS  Google Scholar 

  32. Shinitzky M, ed. Physiology of Membrane Fluidity Boca Raton. FL: CRC Press, 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Ville, A.E., Solà, R., Motta, C. et al. Physicochemical Changes in HDL3 after Bezafibrate Treatment: Influence on Free Cholesterol Efflux from Human Fibroblasts. Cardiovasc Drugs Ther 11, 653–658 (1997). https://doi.org/10.1023/A:1007734924101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007734924101

Navigation