Skip to main content

Basics in Lipoprotein Metabolism

  • Chapter
  • First Online:
Lipid Management

Abstract

Lipids are a heterogeneous group of water insoluble molecules. The major body lipids are fatty acids, glycerolipids, phospholipids and cholesterol. Because of their hydrophobicity, lipids are distributed into membranes and stored in the form of droplets (triacylglycerol) in adipocytes, or transported in plasma by lipoproteins or albumin. In this chapter, we discuss the basics of lipoprotein metabolism including the packaging of lipids into lipoproteins in both the fasting state and following a meal. We then discuss key concepts in chylomicron, VLDL, LDL, HDL, phospholipid and triglyceride metabolism. The main mechanisms of how cells metabolize and excrete cholesterol are then discussed given its relevance to atherosclerosis. Throughout the chapter, we emphasize the critical steps in lipoprotein metabolism that have been targeted by therapies, and the key pathways whose aberrations predispose to increased cardiovascular disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53. PubMed PMID: 9742976. Epub 1998/09/22. eng.

    Google Scholar 

  2. Yassine HN, Jackson AM, Borges CR, Billheimer D, Koh H, Smith D, et al. The application of multiple reaction monitoring and multi-analyte profiling to HDL proteins. Lipids Health Dis. 2014;13(1):8.

    Google Scholar 

  3. Gordon SM, Deng J, Lu LJ, Davidson WS. Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography. J Proteome Res. 2010;9(10):5239–49. PubMed PMID: 20718489. Epub 2010/08/20. eng.

    Google Scholar 

  4. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117(3):746–56. PubMed PMID: 17332893. Epub 2007/03/03. eng.

    Google Scholar 

  5. Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P, Williams CM. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids. Am J Clin Nutr. 2005;81(1):25–34. PubMed PMID: 15640456. Epub 2005/01/11. eng.

    Google Scholar 

  6. Chait A, Brunzell JD. Acquired hyperlipidemia (secondary dyslipoproteinemias). Endocrinol Metab Clin North Am. 1990;19(2):259–78. PubMed PMID: 2192873. Epub 1990/06/01. eng.

    Google Scholar 

  7. Mahley RW, Huang Y, Weisgraber KH. Putting cholesterol in its place: apoE and reverse cholesterol transport. J Clin Invest. 2006;116(5):1226–9.

    Google Scholar 

  8. Munoz KA, Krebs-Smith SM, Ballard-Barbash R, Cleveland LE. Food intakes of US children and adolescents compared with recommendations. Pediatrics. 1997;100(3):323–9.

    Google Scholar 

  9. Bakerman S. ABC’s of interpretive laboratory data, fourth edition. Scottsdale: Interpretive Laboratory Data, Inc.; 2002.

    Google Scholar 

  10. Ferrier DR. Lippincott’s illustrated reviews: biochemistry sixth edition. Baltimore: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  11. Chung BH, Franklin F, Cho BS, Segrest J, Hart K, Darnell BE. Potencies of lipoproteins in fasting and postprandial plasma to accept additional cholesterol molecules released from cell membranes. Arterioscler Thromb Vasc Biol. 1998;18(8):1217–30.

    Google Scholar 

  12. Davies BS, Beigneux AP, Barnes RH II, Tu Y, Gin P, Weinstein MM, et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 2010;12(1):42–52.

    Google Scholar 

  13. Jiang X-C, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab. 2012;9(1):1–7.

    Google Scholar 

  14. Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004;45(9):1594–607.

    Article  CAS  PubMed  Google Scholar 

  15. Sankaranarayanan S, de la Llera-MoyaM, Drazul-Schrader D, Phillips MC, Kellner-Weibel G, Rothblat GH. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J Lipid Res. 2013;54(3):671–6.

    Google Scholar 

  16. Ferre P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res Paediatr. 2007;68(2):72–82.

    Google Scholar 

  17. Hudgins LC, Hellerstein MK, Seidman CE, Neese RA, Tremaroli JD, Hirsch J. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J Lipid Res. 2000;41(4):595–604.

    Google Scholar 

  18. Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett. 2008;582(1):10–8.

    Google Scholar 

  19. Loren J, Huang Z, Laffitte BA, Molteni V. Liver X receptor modulators: a review of recently patented compounds (2009–2012). Expert Opin Ther Pat. 2013;23(10):1317–35.

    Google Scholar 

  20. Brunzell JD. Hypertriglyceridemia. N Engl J Med. 2007;357(10):1009–17.

    Google Scholar 

  21. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31(8):1716–25.

    Google Scholar 

  22. Zheng C, Khoo C, Furtado J, Sacks FM. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 2010;121(15):1722–34.

    Google Scholar 

  23. Mauger J-F, Couture P, Bergeron N, Lamarche B. Apolipoprotein C-III isoforms: kinetics and relative implication in lipid metabolism. J Lipid Res. 2006;47(6):1212–8.

    Google Scholar 

  24. Cohorts D. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. New Engl J Medicine. 2014;371(1):22–31.

    Google Scholar 

  25. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41.

    Google Scholar 

  26. Hiukka A, Ståhlman M, Pettersson C, Levin M, Adiels M, Teneberg S, et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes. 2009;58(9):2018–26.

    Google Scholar 

  27. Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, Parks JS, et al. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res. 2012;53(9):1890–909.

    Google Scholar 

  28. Fournier N, Francone O, Rothblat G, Goudouneche D, Cambillau M, Kellner-Weibel G, et al. Enhanced efflux of cholesterol from ABCA1-expressing macrophages to serum from type IV hypertriglyceridemic subjects. Atherosclerosis. 2003;171(2):287–93. PubMed PMID: 14644399.

    Google Scholar 

  29. Schissel S, Tweedie-Hardman J, Rapp J, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996;98(6):1455.

    Google Scholar 

  30. Bi L, Chiang JY, Ding WX, Dunn W, Roberts B, Li T. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice. J Lipid Res. 2013;54(10):2754–62. PubMed PMID: 23904453. Pubmed Central PMCID: PMC3770088. Epub 2013/08/02. eng.

    Google Scholar 

  31. Anichkov NN, Chalatow S. Ueber experimentelle Cholesterinsteatose und ihre Bedeutung für die Entstehung einiger pathologischer Prozesse. Zentralbl Allg Pathol. 1913;24:1–9.

    Google Scholar 

  32. Wilson JD, Lindsey C Jr. Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J Clin Invest. 1965;44(11):1805.

    Google Scholar 

  33. Grundy SM, Ahrens E, Davignon J. The interaction of cholesterol absorption and cholesterol synthesis in man. J Lipid Res. 1969;10(3):304–15.

    Google Scholar 

  34. Altmann SW, Davis HR, Zhu L-j, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.

    Google Scholar 

  35. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.

    Google Scholar 

  36. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proceedings of the National Academy of Sciences. 1999;96(20):11041–8.

    Google Scholar 

  37. Goldstein JL, Brown MS. The cholesterol quartet. Science. 2001;292(5520):1310–2.

    Google Scholar 

  38. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest. 2002;110(7):905–11.

    Google Scholar 

  39. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13(6):655–67.

    Google Scholar 

  40. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31.

    Google Scholar 

  41. Ho Y, Brown M, Goldstein J. Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages: stimulation by high density lipoprotein and other agents. J Lipid Res. 1980;21(4):391–8.

    Google Scholar 

  42. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro J-MA, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell. 1998;93(5):693–704.

    Google Scholar 

  43. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16(1):459–81.

    Google Scholar 

  44. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro J-MA, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 2000;14(22):2819–30.

    Google Scholar 

  45. Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, et al. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab. 2010;12(1):96–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Yassine MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yassine, H., Tappin, K., Sethi, M. (2015). Basics in Lipoprotein Metabolism. In: Yassine, H. (eds) Lipid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-11161-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11161-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11160-5

  • Online ISBN: 978-3-319-11161-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics