Skip to main content
Log in

Morphology of the Mechanosensory Lateral Line System in Elasmobranch Fishes: Ecological and Behavioral Considerations

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The relationship between morphology of the mechanosensory lateral line system and behavior is essentially unknown in elasmobranch fishes. Gross anatomy and spatial distribution of different peripheral lateral line components were examined in several batoids (Raja eglanteria, Narcine brasiliensis, Gymnura micrura, and Dasyatis sabina) and a bonnethead shark, Sphyrna tiburo, and are interpreted to infer possible behavioral functions for superficial neuromasts, canals, and vesicles of Savi in these species. Narcine brasiliensis has canals on the dorsal surface with 1 pore per tubule branch, lacks a ventral canal system, and has 8–10 vesicles of Savi in bilateral rows on the dorsal rostrum and numerous vesicles (\(\overline {\text{x}} \) = 65 ± 6 SD per side) on the ventral rostrum. Raja eglanteria has superficial neuromasts in bilateral rows along the dorsal body midline and tail, a pair anterior to each endolymphatic pore, and a row of 5–6 between the infraorbital canal and eye. Raja eglanteria also has dorsal canals with 1 pore per tubule branch, pored and non-pored canals on the ventral surface, and lacks a ventral subpleural loop. Gymnura micrura has a pored dorsal canal system with extensive branch patterns, a pored ventral hyomandibular canal, and non-pored canal sections around the mouth. Dasyatis sabina has more canal pores on the dorsal body surface, but more canal neuromasts and greater diameter canals on the ventral surface. Sphyrna tiburo has primarily pored canals on both the dorsal and ventral surfaces of the head, as well as the posterior lateral line canal along the lateral body surface. Based upon these morphological data, pored canals on the dorsal body and tail of elasmobranchs are best positioned to detect water movements across the body surface generated by currents, predators, conspecifics, or distortions in the animal's flow field while swimming. In addition, pored canals on the ventral surface likely also detect water movements generated by prey. Superficial neuromasts are protected from stimulation caused by forward swimming motion by their position at the base of papillar grooves, and may detect water flow produced by currents, prey, predators, or conspecifics. Ventral non-pored canals and vesicles of Savi, which are found in benthic batoids, likely function as tactile or vibration receptors that encode displacements of the skin surface caused by prey, the substrate, or conspecifics. This mechanotactile mechanism is supported by the presence of compliant canal walls, neuromasts that are enclosed in wide diameter canals, and the presence of hair cells in neuromasts that are polarized both parallel to and nearly perpendicular to the canal axis in D. sabina. The mechanotactile, schooling, and mechanosensory parallel processing hypotheses are proposed as future directions to address the relationships between morphology and physiology of the mechanosensory lateral line system and behavior in elasmobranch fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, M.A., D.H. Hall & M.V.L. Bennett. 1988a. The elasmobranch spiracular organ I. Morphological studies. J. Comp. Physiol. A 163: 85–92.

    Google Scholar 

  • Barry, M.A., D.H. Hall & M.V.L. Bennett. 1988b. The elasmobranch spiracular organ II. Physiological studies. J. Comp. Physiol. A 163: 93–98.

    Google Scholar 

  • Barry, M.A. & M.V.L. Bennett. 1989. Specialized lateral line receptor systems in elasmobranchs: the spiracular organs and vesicles of Savi. pp. 591–606. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line-Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Blaxter, J.H.S. & L. A. Fuiman. 1990. The role of the sensory systems of herring larvae in evading predatory fishes. J. Mar. Biol. Ass. U.K. 70: 413–427.

    Google Scholar 

  • Bleckmann, H. & T.H. Bullock. 1989. Central nervous physiology of the lateral line, with special reference to cartilaginous fishes. pp. 387–408. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Bleckmann, H., T.H. Bullock & J.M. Jorgensen. 1987. The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J. Comp. Physiol. A 161: 67–84.

    Google Scholar 

  • Bleckmann, H., O. Weiss & T.H. Bullock. 1989. Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J. Comp. Physiol. A 164: 459–474.

    Google Scholar 

  • Bodznick, D. & R.G. Northcutt. 1980. Segregation of electro-and mechanoreceptive inputs to the elasmobranch medulla. Brain Res. 195: 313–321.

    Google Scholar 

  • Boord, R.L. & C.B.G. Campbell. 1977. Structural and functional organization of the lateral line system of sharks. Amer. Zool. 17: 431–441.

    Google Scholar 

  • Boord, R.L. & J.C. Montgomery. 1989. Central mechanosensory lateral line centers and pathways among the elasmobranchs. pp. 323–340. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Bradley, J.L. 1996. Prey energy content and selection, habitat use and daily ration of the Atlantic stingray, Dasyatis sabina. M.S. Thesis, Florida Institute ofTechnology, Melbourne. 49 pp.

    Google Scholar 

  • Budker, P. 1958. Les organes sensoriels cutanés des sélaciens. pp. 1033–1062. In: P.-P. Grassé (ed.) Traité de Zoologie, Vol. 13, fasc. 2, Masson et Cie, Paris.

    Google Scholar 

  • Campenhausen, C. von, I. Riess & R. Weissert. 1981. Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J. Comp. Physiol. 143: 369–374.

    Google Scholar 

  • Castro, J.I. 1983. The sharks of north American waters. Texas A&M University Press, College Station. 180 pp.

    Google Scholar 

  • Chu, Y.T. & M.C. Wen. 1979. A study of the lateral-line canal system and that of Lorenzini ampullae and tubules of elasmobranchiate fishes of China. Monograph of Fishes of China, Academic Press, Shanghai. 132 pp.

    Google Scholar 

  • Clapp, C.M. 1898. The lateral line system of Batrachus tau. J. Morph. 15: 223–265.

    Google Scholar 

  • Cole, F.J. 1896. On the cranial nerves of Chimaera monstrosa, with a discussion of the lateral line system and of the morphology of the chorda tympani. Trans. R. Soc. Edin. 38: 631–680.

    Google Scholar 

  • Cook, D.A. 1994. Temporal patterns of food habits of the Atlantic stingray, Dasyatis sabina (LeSeur, 1824), from the Banana River Lagoon, Florida. M.S. Thesis, Florida Institute of Technology, Melbourne. 45 pp.

    Google Scholar 

  • Coombs, S. 1994. Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J. Exp. Biol. 190: 109–129.

    Google Scholar 

  • Coombs, S. & J. Janssen. 1989. Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). pp. 299–319. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Coombs, S., J. Janssen & J.F. Webb. 1988. Diversity of lateral line systems: evolutionary and functional considerations. pp. 553–593. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Cortés, E., C. Manire & R.E. Hueter. 1996. Diet, feeding habits, and diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in Southwest Florida. Bull. Mar. Sci. 58: 353–367.

    Google Scholar 

  • Daiber, F.C. & R.A. Booth. 1960. Notes on the biology of the butterfly rays, Gymnura altavela and Gymnura micrura. Copeia 1960: 137–139.

    Google Scholar 

  • Denton, E.J. & J.A.B. Gray. 1983. Mechanical factors in the excitation of clupeid lateral lines. Proc. R. Soc. Lond. B 218: 1–26.

    Google Scholar 

  • Denton, E.J. & J.A.B. Gray. 1988. Mechanical factors in the excitation of the lateral line of fishes. pp. 595–593. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Dijkgraaf, S. 1934. Untersuchungenüber die Funktion der Seitenorgane an Fischen. Zeitschrift fur vergleichende Physiologie 20: 162–214.

    Google Scholar 

  • Dijkgraaf, S. 1962. The functioning and significance of the lateral line organs. Biol. Rev. 38: 51–106.

    Google Scholar 

  • Ekströmvon Lubitz, D.K.J. 1981. Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell Tiss. Res. 215: 651–665.

    Google Scholar 

  • Ewart, J.C. 1892. The lateral sense organs of elasmobranchs. I. The sensory canals of Laemargus. Trans. R. Soc. Edinb. 37: 59–85.

    Google Scholar 

  • Ewart, J.C. & H.C. Mitchell. 1892. On the lateral sense organs of elasmobranchs. II. The sensory canals of the common skate (Raja batis). Trans. R. Soc. Edinb. 37: 87–105.

    Google Scholar 

  • Fitz, E.S. & F.C. Daiber. 1963. An introduction to the biology of Raja eglanteria Bosc 1802 and Raja erinacea Mitchell 1825, as they occur in Delaware Bay. Bull. Bingham. Oceanogr. Coll. 18: 69–97.

    Google Scholar 

  • Flock, A. 1965a. Electronmicroscopic and electrophysiologic studies on the lateral line canal organ. Acta Oto-laryngol. Suppl. 199: 1–90.

    Google Scholar 

  • Flock, A. 1965b. Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harbor Symp. Quant. Biol. 30: 133–145.

    Google Scholar 

  • Fuiman, L.A. 1993. Development of predator evasion in Atlantic herring, Clupea harengus L. Anim. Behav. 45: 1101–1116.

    Google Scholar 

  • Funicelli, N.A. 1975. Taxonomy, feeding, limiting factors and sex ratios of Dasyatis sabina, Dasyatis americana, Dasyatis say, and Narcine brasiliensis. Ph.D. Dissertation, University of Southern Mississippi, Hattiesburg. 259 pp.

    Google Scholar 

  • Garman, S. 1888. On the lateral canal system of Selachia and Holocephala. Bull. Mus. Comp. Zool. 17: 57–119.

    Google Scholar 

  • Görner, P. & C. Mohr. 1989. Stimulus localization in Xenopus: role of directional sensitivity of lateral line stitches. pp. 543–560. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Hama, K. & Y. Yamada. 1977. Fine structure of the ordinary lateral line organ II. The lateral line canal organ of the spotted shark, Mustelus manazo. Cell Tiss. Res. 176: 23–36.

    Google Scholar 

  • Harris, G.G. & W.A. Van Bergeijk. 1962. Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Amer. 34: 1831–1841.

    Google Scholar 

  • Hassan, E.S. 1989. Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish, Anoptichthys jordani. pp. 217–227. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Hensel, K. 1978. Morphology of the lateral-line canal system of the genera Abramis, Blicca, and Vimba with regard to their ecology and systematic position. Acta. Univ. Carol. Biol. 12: 105–197.

    Google Scholar 

  • Hildebrand, S.F. & W.C. Schroeder. 1928. Fishes of the Chesapeake Bay. Bull. U.S. Bur. Fish. 43: 1–366.

    Google Scholar 

  • Hillman, D.E. & E.R. Lewis. 1971. Morphological basis for a mechanical linkage in otolithic receptor transduction in the frog. Science 174: 416–419.

    Google Scholar 

  • Hoagland, H. 1933. Quantitative analysis of responses from lateral-line nerves of fishes. II. J. Gen. Physiol. 16: 715–732.

    Google Scholar 

  • Hoekstra, D. & J. Janssen. 1985. Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Env. Biol. Fish. 12: 111–117.

    Google Scholar 

  • Hoekstra, D. & J. Janssen. 1986. Lateral line receptivity in the mottled sculpin (Cottus bairdi). Copeia 1986: 91–96.

  • Hofer, B. 1908. Studien über die Hautsinnesorgane der Fische. I. Die Funktion der Seitenorgane bei den Fischen. Berichte der Königlich Bayerischen Biologischen Veruchsstation München 1: 115–164.

    Google Scholar 

  • Janssen, J., W.R. Jones, A. Whang & P.E. Oshel. 1995. Use of the lateral line in particulate feeding in the dark by juvenile alewife (Alosa pseudoharengus). Can. J. Fish. Aquat. Sci. 52: 358–363.

    Google Scholar 

  • Johnson, S.E. 1917. Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J. Comp. Neurol. 28: 1–74.

    Google Scholar 

  • Kalmijn, A.J. 1989. Functional evolution of lateral line and inner ear sensory systems. pp. 187–215. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Katsuki, Y. & T. Hashimoto. 1969. Shark pit organs: enhancement of mechanosensitivity by potassium ions. Science 180: 1287–1289.

    Google Scholar 

  • Katsuki, Y., K. Yanagisawa, A.L. Tester & J.I. Kendall. 1969. Shark pit organs: response to chemicals. Science 163: 405–407.

    Google Scholar 

  • Kroese, A.B. & N.A.M. Schellart. 1992. Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophys. 68: 2212–2221.

    Google Scholar 

  • Lannoo, M.J. 1987. Neuromast topography in urodele amphibians. J. Morphol. 191: 247–263.

    Google Scholar 

  • Leydig, F. 1850. Über die Schleimkanale der Knochenfische. Arch. Anat. Physiol. Wiss. Med. 1850: 170–181.

  • Maruska, K.P., E.G. Cowie & T.C. Tricas. 1996. Periodic gonadal activity and protracted mating in elasmobranch fishes. J. Exp. Zool. 276: 219–232.

    Google Scholar 

  • Maruska, K.P. & T.C. Tricas. 1998. Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: the mechanotactile hypothesis. J. Morph. 238: 1–22.

    Google Scholar 

  • Michael, S.W. 1993. Reef sharks and rays of the world: a guide to their identification, behavior, and ecology. Sea Challengers, Monterey. 107 pp.

  • Montgomery, J.C. 1989. Lateral line detection of planktonic prey. pp. 561–574. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Montgomery, J.C., C.F. Baker & A.G. Carton. 1997. The lateral line can mediate rheotaxis in fish. Nature 389: 960–963.

    Google Scholar 

  • Montgomery, J.C., J.A. Macdonald & G.D. Housley. 1988. Lateral line function in an Antarctic fish related to the signals produced by planktonic prey. J. Comp. Physiol. A 163: 827–833.

    Google Scholar 

  • Montgomery, J.C. & A.J. Saunders. 1985. Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc. R. Soc. Lond. B 224: 197–208.

    Google Scholar 

  • Montgomery, J.C. & E. Skipworth. 1997. Detection of weakwater jets by the short-tailed stingray Dasyatis brevicaudata (Pisces: Dasyatidae). Copeia 1997: 881–883.

  • Münz, H. 1985. Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J. Comp. Physiol. A 157: 555–568.

    Google Scholar 

  • Münz, H. 1989. Functional organization of the lateral line periphery. pp. 285–297. In: S. Coombs, P. Görner & H. Münz (ed.) The Mechanosensory Lateral Line - Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Murray, R.W. 1961. The initiation of cutaneous nerve impulses in elasmobranch fishes. J. Physiol. 159: 546–570.

    Google Scholar 

  • Nickel, E. & S. Fuchs. 1974. Organization and ultrastructure of mechanoreceptors (Savi vesicles) in the elasmobranch Torpedo. J. Neurocytol. 3: 161–177.

    Google Scholar 

  • Norris, H.W. 1932. The laterosensory system of Torpedo marmorata, innervation and morphology. J. Comp. Neurol. 56: 169–178.

    Google Scholar 

  • Northcutt, R.G. 1992. The phylogeny of octavolateralis ontogenies: a reaffirmation of Garstang's phylogenetic hypothesis. pp. 21–47. In: D.B. Webster, R.R. Fay & A.N. Popper (ed.) The Evolutionary Biology of Hearing, Springer-Verlag, New York.

    Google Scholar 

  • Partridge, B.L. & T.J. Pitcher. 1980. The sensory basis of fish schools: relative roles of lateral line and vision. J. Comp. Physiol. 135: 315–325.

    Google Scholar 

  • Presnell, J.K. & M.P. Schreibman. 1997. Humason's animal tissue techniques, fifth edition. John Hopkins University Press, Baltimore. 572 pp.

    Google Scholar 

  • Puzdrowski, R.L. & R.B. Leonard. 1993. The ocatvolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. J. Comp. Neurol. 332: 21–37.

    Google Scholar 

  • Roberts, B.L. 1969. Mechanoreceptors and the behavior of elasmobranch fishes with special reference to the acousticolateralis system. pp. 331- 390. In: E.S. Hodgeson & R.F. Mathewson (ed.) Sensory Biology of Sharks, Skates and Rays, Office of Naval Research, Department of the Navy, Arlington.

    Google Scholar 

  • Roberts, B.L. & K.P. Ryan. 1971. The fine structure of the lateralline sense organs of dogfish. Proc. R. Soc. Lond. B 179: 157–169.

    Google Scholar 

  • Rudloe, A. 1989. Captive maintenance of the lesser electric ray, with observations of feeding behavior. Prog. Fish Cult. 51: 37–41.

    Google Scholar 

  • Sand, A. 1937. The mechanism of the lateral sense organs of fishes. Proc. R. Soc. B 123: 472–495.

    Google Scholar 

  • Satou, M., H.A. Takeuchi, S. Kitamura, Y. Kudo, J. Nishii & M. Tanabe. 1991. Involvement of lateral line sense in intersexual vibrational communication during spawning behaviour in the hime salmon (landlocked red salmon, Oncorhynchus nerka). Neurosci. Res. Suppl. 14: 15.

    Google Scholar 

  • Satou, M., H.A. Takeuchi, J. Nishii, M. Tanabe, S. Kitamura, N. Okumoto & M. Iwata. 1994. Behavioral and electrophysiological evidence that the lateral line is involved in the inter-sexual vibrational communication of the hime salmon (landlocked red salmon, Oncorhynchus nerka). J. Comp. Physiol. A 174: 539–549.

    Google Scholar 

  • Savi, P. 1844. Etudes anatomiques sur le systeme nerveux et sur l'organe electrique de la Torpille. pp. 272–348. In: C. Matteucci (ed.) Traite des Phenomenes Electrophysiologiques des Animaux, Chez L. Mechelsen, Paris.

    Google Scholar 

  • Schwartz, F.J. 1996. Biology of the clearnose skate, Raja eglanteria, from North Carolina. Florida Scientist 59: 82–95.

    Google Scholar 

  • Stenonis, N. 1664. De muscalis et glandulis observationum specimen cum duabus epistelis quarum una ad guil. Pisonum de Rajidae etc., Hafniae. 84 pp.

  • Szabo, T. 1958. Quelques precisions sur la morphologie de l'appareil sensoriel de Savi dans Torpedo marmorata. Zeitschrift für Zellforschung 48: 536–537.

    Google Scholar 

  • Szabo, T. 1968. Analyse morphologigicque et fonctionelle de l'epithelium sensoriel d'un mechanorecepteur. Actual. Neurol. 6: 131–147.

    Google Scholar 

  • Tester, A.L. & J.I. Kendall. 1967. Innervation of free and canal neuromasts in the sharks Carcharhinus menisorrah and Sphyrna lewini. pp. 53–69. In: P.H. Cahn (ed.) Lateral Line Detectors, Indiana University Press, Bloomington.

    Google Scholar 

  • Tester, A.L. & J.I. Kendall. 1969. Morphology of the lateralis canal system in the shark genus Carcharhinus. Pac. Sci. 23: 1–16.

    Google Scholar 

  • Tester, A.L. & G.J. Nelson. 1969. Free neuromasts (pit organs) in sharks. pp. 503–531. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates and Rays, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Webb, J.F. & R.G. Northcutt. 1997. Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav. Evol. 50: 139–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruska, K.P. Morphology of the Mechanosensory Lateral Line System in Elasmobranch Fishes: Ecological and Behavioral Considerations. Environmental Biology of Fishes 60, 47–75 (2001). https://doi.org/10.1023/A:1007647924559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007647924559

Navigation