Skip to main content

Morphological Diversity, Development, and Evolution of the Mechanosensory Lateral Line System

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

Abstract

Morphological, physiological, behavioral, and developmental studies of the mechanosensory lateral line system are used to define sources of morphological and functional variation in the system among fishes (and briefly in amphibians), review patterns and mechanisms of embryonic and postembryonic development, discuss how interspecific variation in morphology is explained by developmental patterns, and place the morphology of the lateral line system in model species for neurophysiological and neuroethological studies into a broader comparative context. The presence of both canal and superficial neuromasts defines two sensory submodalities in jawed fishes. The number and spatial distribution of superficial neuromasts appear to demonstrate more variation among species when compared to that of the canal neuromasts, whose distribution is limited by their association with the lateral line canals. Morphological diversity of the lateral line canal system is defined by (1) variation in the morphology and extent of development of the cranial lateral line canals; (2) the number, placement, and extent of development of the trunk canals; and (3) the distribution of superficial neuromasts on the skin of the head, trunk, and tail. An understanding of the pattern and timing of lateral line development is essential for an appreciation of changes in lateral line function and thus its behavioral roles through a fish’s life history. The evolution of the lateral line system and structure–function relationships among species are best appreciated when patterns and underlying mechanisms of development are considered. Conversely, an appreciation for morphological diversity among species is likely to assist in the interpretation of developmental patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, Y., Asaoka, R., Nakae, M., & Sasaki, K. (2012). Ambiguities in the identification of batoid lateral line systems clarified by innervation. Ichthyological Research, 59, 189–192.

    Google Scholar 

  • Adriaens, D., Verraes, W., & Taverne, L. (1997). The cranial lateral-line system in Clarias gariepinus (Burchell, 1822) (Siluroidei: Clariidae): Morphology and development of canal related bones. European Journal of Morphology, 35, 181–208.

    CAS  PubMed  Google Scholar 

  • Ahlberg, P. E., & Clack, J. A. (1998). Lower jaws, lower tetrapods—a review based on the Devonian genus Acanthostega. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89, 11–46.

    Google Scholar 

  • Allis, E. P. (1889). The anatomy and development of the lateral line system in Amia calva. Journal of Morphology, 2, 463–542+ plates.

    Google Scholar 

  • Allis, E. P. (1903). The laterosensory system in the Muraenidae. Int. Mschr. Anat. Physiol. 20, 125–170 + plates.

    Google Scholar 

  • Aman, A., & Piotrowski, T. (2009). Multiple signaling interactions coordinate collective cell migration of the posterior lateral line primordium. Cell Adhesion and Migration, 3, 365–368.

    PubMed  Google Scholar 

  • Aman, A., Nguyen, M., & Piotrowski, T. (2011). Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, 349, 470–482.

    CAS  PubMed  Google Scholar 

  • Appelbaum, S., & Schemmel, C. (1983). Dermal sense organs and their significance in the feeding behaviour of the common sole Solea vulgaris. Marine Ecology Progress Series, 13, 29–36.

    Google Scholar 

  • Aquino, A. E., & Schaefer, S.A. (2002). Structural diversity of the temporal region of catfishes: Convergence in functional integration of sensory systems. Zoologischer Anzeiger, 241, 223–244.

    Google Scholar 

  • Arratia, G., & Huaquin, L. (1995). Morphology of the lateral line system and of the skin of diplomystid and certain primitive loricarioid catfishes and systematic and ecological considerations. Bonner Zoologische Monographien, 36, 1–110.

    Google Scholar 

  • Asano, H. (1962). Studies on the congrid eels of Japan. Bulletin of the Misaki Marine Biological Institute, Kyoto University, 1, 1–143.

    Google Scholar 

  • Asaoka, R., Nakae, M., & Sasaki, K. (2011). Description and innervation of the lateral line system in two gobioids, Odontobutis obscura and Pterobobius elapoides (Teleostei: Perciformes). Ichthyological Research, 58, 51–61.

    Google Scholar 

  • Asaoka, R., Nakae, M., & Sasaki, K. (2012). The innervation and adaptive significance of extensively distributed neuromasts in Glossogobius olivaceus (Perciformes: Gobiidae). Ichthyological Research, 59, 143–150.

    Google Scholar 

  • Baker, C. F., & Montgomery, J. C. (1999). The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. Journal of Comparative Physiology Z: Neuroethology, Sensory, Neural, and Behavioral Physiology, 184, 519–527.

    Google Scholar 

  • Baker, C. V. H., & Bronner-Fraser, M. (2001). Vertebrate cranial placodes I. Embryonic induction. Developmental Biology, 232, 1–61.

    CAS  PubMed  Google Scholar 

  • Balushkin, A. V. (1996). Structure and evolution of the trunk lateral lines of the Notothenoidei (Perciformes). Journal of Ichthyology, 36, 419–429.

    Google Scholar 

  • Bass, A. H. (2008). Steroid-dependent plasticity of vocal motor systems: Novel insights from teleost fish. Brain Research Reviews, 57, 299–308.

    CAS  PubMed  Google Scholar 

  • Bassett, D. K., Carton A. G., & Montogmery J. C. (2006). Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral-line system. Marine and Freshwater Research, 57, 611–617.

    Google Scholar 

  • Beckmann, M., Eros, T., Schmitz, A., & Bleckmann, H. (2010). Number and distribution of superficial neuromasts in twelve common European cypriniform fishes and their relationship to habitat occurrence. International Review of Hydrobiology, 95, 273–284.

    Google Scholar 

  • Beckwith, C. J. (1907). The early development of the lateral line system of Amia calva. Biological Bulletin, 14, 23–34.

    Google Scholar 

  • Behra, M., Bradsher, J., Sougrat, R., Gallardo, V., Allende, M. L., & Burgess, S. M. (2009). Phoenix is required for mechanosensory hair cell regeneration in the zebrafish lateral line. PLoS Genetics. 5: e1000455.

    PubMed Central  PubMed  Google Scholar 

  • Bialowiec, L., & Jakubowski, M. (1971). The anatomical structure, topography, and innervation of lateral-line organs in Gaidropsarus mediterraneus L. (Gadidae, Pisces). Acta Biologica Cracoviensia, Series Zoologica, 14, 257–265.

    Google Scholar 

  • Bird, N. C., & Hernandez, L. P. (2007). Morphological variation in the Weberian apparatus of Cypriniformes. Journal of Morphology, 268, 739–757.

    PubMed  Google Scholar 

  • Blaxter, J. H. S. (1987). Structure and development of the lateral line. Biological Reviews, 62, 471–514.

    Google Scholar 

  • Blaxter, J. H. S., & Fuiman, L. A. (1989). Function of the free neuromasts of marine teleost larvae. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 481–499). New York: Springer-Verlag.

    Google Scholar 

  • Bleckmann, H., Pryzbilla, A., Klein, A., Schmitz, A., Kunze, S., & Brucker, C. (2012). Station holding of trout: Behavior, physiology and hydrodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 119, 161–177.

    Google Scholar 

  • Boyle, K. S., & Tricas, T. C. (2010). Pulse sound generation, anterior swim bladder buckling, and associated muscle activity in the pyramid butterflyfish, Hemitaurichthys polylepis. Journal of Experimental Biology, 213, 3881–3893.

    PubMed  Google Scholar 

  • Boyle, K. S., & Tricas, T. C. (2011). Sound production in the longnose butterflyfishes (genus Forcipiger): Cranial kinematics, muscle activity and honest signals. Journal of Experimental Biology, 214, 3829–3842.

    PubMed  Google Scholar 

  • Branson, B. A. (1961). The lateral-line system in the Rio Grande perch Cichlasoma cyanoguttatum (Baird and Girard). American Midland Naturalist, 65, 446–458.

    Google Scholar 

  • Branson, B. A., & Moore, G. A. (1962). The lateralis components of the acoustico-lateralis system in the sunfish family Centrarchidae. Copeia, 1962, 1–108.

    Google Scholar 

  • Braun, C. B. (1996). The sensory biology of the living jawless fishes: A phylogenetic assessment. Brain, Behavior, and Evolution, 48, 262–276.

    CAS  Google Scholar 

  • Braun, C. B., & Northcutt, R. G. (1997). The lateral line system of hagfishes (Craniata: Myxinoidea). Acta Zoologica (Stockholm), 78, 247–268.

    Google Scholar 

  • Braun, C. B., & Grande, T. (2008). Evolution of peripheral mechanisms for the enhancement of sound reception. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish bioacoustics (pp. 99–144). New York: Springer-Verlag.

    Google Scholar 

  • Britz, R., & Kottelat, M. (2003). Descriptive osteology of the family Chaeudhuriidae (Teleosteii, Synbranchiformes, Mastacembeloidei), with a discussion of its relationships. American Museum Novitates, 3418, 1–62.

    Google Scholar 

  • Burt de Perera, T., & Braithwaite, V. A. (2005). Laterality in a non-visual sensory modality—the lateral line of fish. Current Biology, 15, R241–R24.

    CAS  Google Scholar 

  • Cahn, P. H., Shaw, E., & Atz, E. H. (1968). Lateral-line histology as related to the development of schooling in the atherinid fish, Menidia. Bulletin of Marine Science, 18, 660–670.

    Google Scholar 

  • Carton, A. G., & Montgomery, J. C. (2004). A comparison of lateral line morphology of blue cod and torrentfish: Two sandperches of the family Pinguipedidae. Environmental Biology of Fishes, 70, 123–131.

    Google Scholar 

  • Caruso, J. H. (1989). Systematics and distribution of chaunacid anglerfishes (Pisces: Lophiiformes). Copeia, 1989, 153–165.

    Google Scholar 

  • Chagnaud, B. H., Bleckmann, H., & Hofmann, M. H. (2007). Karman vortex street detection by the lateral line. Journal of Comparative Physiology, A, 193, 753–763.

    Google Scholar 

  • Chagnaud, B. P., Bleckmann, H., & Hofmann, M. H. (2008). Detecting flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. Journal of Neuroscience, 28, 4479–4487.

    CAS  PubMed  Google Scholar 

  • Chang, J. S. Y., Popper, A. N., & Saidel, W. M. (1992). Heterogeneity of sensory hair cells in a fish ear. Journal of Comparative Neurology, 324, 621–640.

    CAS  PubMed  Google Scholar 

  • Chao, L. N. (1978). A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). National Oceanic and Atmospheric Administration Technical Report. National Marine Fisheries Service, Rockville, MD. Circular 415, 1–64.

    Google Scholar 

  • Chitnis, A. J., Nogare, D. D., & Matsuda, M. (2011). Building the posterior lateral line system in zebrafish. Developmental Neurobiology, 72, 234–255.

    Google Scholar 

  • Chu, Y. T., & Wen, M. C. (1979). Monograph of fishes of China (No. 2): A study of the lateral-line canals system and that of lorenzini ampulla and tubules of elasmobranchiate fishes of China. Shanghai: Science and Technology Press.

    Google Scholar 

  • Clapp, C. M. (1889). The lateral line system of Batrachus tau. Journal of Morphology, 15, 223–264.

    Google Scholar 

  • Collinge, W. E. (1895). On the sensory canal system of fishes. Teleostei—Suborder A. Physostomi. Proceedings of the Zoological Society of London, 63, 274–299.

    Google Scholar 

  • Coombs, S., & Montgomery, J. (1994). Function and evolution of superficial neuromasts in an Antarctic nototheniod fish. Brain, Behavior and Evolution, 44, 287–298

    CAS  PubMed  Google Scholar 

  • Coombs, S., & Conley, R. A. (1997). Dipole source localization by mottled sculpin. I. Approach strategies. Journal of Comparative Physiology A, 180, 387–399.

    CAS  Google Scholar 

  • Coombs, S., & van Netten, S. (2006). The hydrodynamics and structural mechanics of the lateral line system. In R. E. Shadwick & G. V. Lauder (Eds.), Fish biomechanics (pp. 103–139). San Diego: Elsevier.

    Google Scholar 

  • Coombs, S., Janssen, J., & Webb, J. F. (1988). Diversity of lateral line systems: Phylogenetic and functional considerations. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 553–593). New York: Springer-Verlag.

    Google Scholar 

  • Coombs, S., Janssen, J., & Montgomery, J. (1992). Functional and evolutionary implications of peripheral diversity in lateral line systems. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.). Evolutionary biology of hearing (pp. 267–294). New York: Springer-Verlag.

    Google Scholar 

  • Coombs, S., Braun, C., & Donovan, B. (2001). The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. Journal of Experimental Biology, 204, 337–348.

    CAS  PubMed  Google Scholar 

  • Coombs, S., Fay, R. R., & Elepfandt, A. (2010). Dipole source encoding and tracking by the goldfish auditory system. Journal of Experimental Biology, 213, 3536–3547.

    PubMed  Google Scholar 

  • Corwin, J. T., Balak, K. J., & Borden, P. C. (1989). Cellular events underlying the regenerative replacement of lateral line sensory epithelia in amphibians. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 161–183). New York: Springer-Verlag.

    Google Scholar 

  • Dambly-Chaudière, C., Sapede, D., Soubiran, F., Decorde, K., Gompel, N., & Ghysen, A. (2003). The lateral line of zebrafish: A model system for the analysis of morphogenesis and neural development in vertebrates. Biology of the Cell, 95, 579–587.

    PubMed  Google Scholar 

  • De Beer, G. R. (1985). The development of the vertebrate skull. Chicago: University of Chicago Press.

    Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society of London B, 218, 1–26.

    CAS  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1993). Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philosophical Transactions of the Royal Society of London Biological Sciences, 341, 113–127.

    Google Scholar 

  • Dezfuli, B. S., Capuano, S., Magosso, S., Giari, L., & Berti, R. (2009). The lateral line system in larvae of the blind cyprinid cavefish, Phreatichthys andruzzii. The Anatomical Record, 292, 423–430.

    PubMed  Google Scholar 

  • Diaz, J. P., Prié-Granié, M., Kentouri, M., Varsamos, S., & Connes, R. (2003). Development of the lateral line system in the sea bass. Journal of Fish Biology, 62, 24–40.

    Google Scholar 

  • Di Dario, F. (2004). Homology between the recessus lateralis and cephalic sensory canals, with the proposition of additional synapomorphies for the Clupeiformes and the Clupeoidei. Zoological Journal of the Linnaean Society, 141, 257–270.

    Google Scholar 

  • Di Dario, F., & de Pinna, M. C. C. (2006). The supratemporal system and the pattern of ramification of cephalic sensory canals in Denticeps clupeoides (Denticipitoidei, Teleostei): Additional evidence for monophyly of Clupeiformes and Clupeoidei. Papéis Avulsos de Zoologia (São Paulo), 46, 107–123.

    Google Scholar 

  • Disler, N. N. (1950). Development of the sense organs of the lateral line system of the perch and ruffe. Trudy Instituta Morfologii Zhivotnykh Imeni A. H. Severtsova, 2, 85–139 (translated from Russian by A. R. Gosline & W. A. Gosline).

    Google Scholar 

  • Disler, N. N. (1961). On the structure of the laterosensory system in sharks and rays. Acta Zoologica, 42, 163–175.

    Google Scholar 

  • Disler, N. N. (1971). Lateral line sense organs and their importance in fish behavior. Jerusalem: Israel Program for Scientific Translations.

    Google Scholar 

  • Disler, N. N., & Smirnov, S. A. (1977). Sensory organs of the lateral-line canal system in two percids and their importance in behavior. Journal of the Fisheries Research Board of Canada, 34, 1492–1503.

    Google Scholar 

  • DoNascimiento, C., Provenzano, F., & Lundberg, J. G. (2004). Rhamdia guasarensis (Siluriformes: Heptapteridae), a new species of cave catfish from the Sierra de Perijá, northwestern Venezuela. Proceedings of the Biological Society of Washington, 117, 564–574.

    Google Scholar 

  • Edds-Walton, P. L., & Fay, R. R. (2009). Physiological evidence for binaural directional computations in the brainstem of the oyster toadfish, Opsanus tau (L.). Journal of Experimental Biology, 212, 1483–1493.

    Google Scholar 

  • Ekström von Lubitz, D. K. (1981). Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell and Tissue Research, 215, 651–665.

    PubMed  Google Scholar 

  • Fang, F. (2003). Phylogenetic analysis of the Asian cyprinid genus Danio (Teleostei, Cyprinidae). Copeia, 2003, 714–728.

    Google Scholar 

  • Fange, R., Larsson, A., & Lidman, U. (1972). Fluids and jellies of the acusticolateralis system in relation to body fluids in Coryphaenoides rupestris and other fishes. Marine Biology, 17, 180–185.

    CAS  Google Scholar 

  • Faucher, K., Aubert, A., & Lagardére, J-P. (2003). Spatial distribution and morphological characteristics of the trunk lateral line neuromasts of the sea bass (Dicentrarchus labrax, L.; Teleostei, Serranidae). Brain, Behavior, and Evolution, 62, 223–232.

    Google Scholar 

  • Faucher, K., Lagardére, J-P., & Aubert, A. (2005). Quantitative aspects of the spatial distribution and morphological characteristics of the sea bass (Dicentrarchus labrax L.; Teleostei, Serranidae) trunk lateral line neuromasts. Brain, Behavior and Evolution, 65, 231–243.

    Google Scholar 

  • Fay, R. R., & Edds-Walton, P. L. (2008). Structures and functions of the auditory nervous system of fishes. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.). Fish bioacoustics (pp. 49–98). New York: Springer-Verlag.

    Google Scholar 

  • Fernholm, B. (1985). The lateral line system of cyclostomes. In R. E. Foreman, A. Gorbman, J. M. Dodd, & R. Olsson, R. (Eds.), Evolution and biology of primitive fishes (pp. 113–122). New York: Plenum Press.

    Google Scholar 

  • Fields, R. D., Bullock, T. H., & Lange, G. D. (1993). Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain, Behavior and Evolution, 41, 269–289.

    CAS  PubMed  Google Scholar 

  • Flock, A. (1965a). Electron microscopic an delectrophysiological studies on the lateral line canal organ. Acta Otolaryngologica Supplementum. S199, 7–90.

    Google Scholar 

  • Flock, A. (1965b). Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harbor Symposia on Quantitative Biology, 30, 133–145.

    CAS  PubMed  Google Scholar 

  • Franz-Odendaal, T. A., & Hall, B. K. (2006). Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evolution and Development, 8, 94–100.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B. (1989). Diversity and regression in the amphibian lateral line and electrosensory system. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 99–114). New York: Springer-Verlag.

    Google Scholar 

  • Fritzsch, B., & Neary, T. J. (1998). The octavolateralis system of mechanosensory and electrosensory organs. In H. Heatwole, & E. M. Dawley (Eds.), Amphibian biology, Vol. 3 (pp. 878–922). Australia: Surrey Beattey & Sons.

    Google Scholar 

  • Fryer, G. (1959). The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting Cichlidae. Proceedings of the Zoological Society of London, 132,153–281.

    Google Scholar 

  • Fuiman, L. A., Higgs, D. M., & Poling, K. R. (2004). Changing structure and function of the ear and lateral line system of fishes during development. American Fisheries Society Symposium, 40, 117–144.

    Google Scholar 

  • Fujita, T., & Hosoya, K. (2005). Cephalic lateral line systems in the Far Eastern species of the genus Phoxinus (Cyprinidae). Ichthyological Research, 52, 336–342.

    Google Scholar 

  • Fukuda, E., Nakae, M., Asaoka, R., & Sasaki, K. (2010). Branching patterns of trunk lateral line nerves in Pleuronectiformes: Uniformity and diversity. Ichthyological Research, 57, 148–160.

    Google Scholar 

  • Gallardo, V. E., Liang, J., Behra, M., Elkahloun, A., Villablanca, E. J., Russo, V., Allende, M. L., & Burgess, S. M. (2010). Molecular dissection of the migrating posterior lateral line primordium during early development in zebrafish. BMC Developmental Biology, 10, 120.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner, J. M., Hueter, R. E., Maruska, K. P., Sisneros, J. A., Casper, B. M., Mann, D. A., & Demski, L. S. (2012). Sensory physiology and behavior of elasmobranchs. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), Biology of sharks and their relatives, Vol. I. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Garman, S. (1899). Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapogos Islands, in charge of Alexander Agassiz, by the United States Fish Commission Steamer “Albatross” during 1891, Lieut. Commander Z.L. Tanner, USN, Commanding. XXVI—The Fishes. Memoirs of the Museum of Comparative Zoology, 24, 1–431 + 97 plates.

    Google Scholar 

  • Gelman, S., Ayali, A., Tytell, E. D., & Cohen, A. H. (2006). Larval lampreys possess a functional lateral line system. Journal of Comparative Physiology A, 193, 271–277.

    Google Scholar 

  • Ghysen, A., & Dambly-Chaudière, C. (2007). The lateral line microcosmos. Genes & Development, 21, 2118–2130.

    CAS  Google Scholar 

  • Ghysen, A., Schuster, K., Coves, D., De La Gandara, F., Papandroulakis, N., & Ortega, A. (2010). Development of the posterior lateral line system in Thunnus thynnus, the Atlantic blue-fin tuna, and in its close relative Sarda sarda. International Journal of Developmental Biology, 54, 1317–1322.

    PubMed  Google Scholar 

  • Ghysen, A., Dambly-Chaudière, C., Coves, D., de la Gandara, F., & Ortega, A. (2012). Developmental origin of a major difference in sensory patterning between zebrafish and Bluefin tuna. Evolution and Development, 14, 204–211.

    PubMed Central  PubMed  Google Scholar 

  • Gibbs, M. A. (1999). Lateral line morphology and cranial osteology of the rubynose brotula, Cataetyx rubrirostris. Journal of Morphology, 241, 265–274.

    CAS  PubMed  Google Scholar 

  • Gibbs, M. A., & Northcutt, R. G. (2004). Development of the lateral line system in the shovelnose sturgeon. Brain, Behavior and Evolution, 64, 70–84.

    PubMed  Google Scholar 

  • Gillis, J. A., Modrell, M. S., Northcutt, R. G., Catania, K. C., Luer, C. A., & Baker, C. V. H. (2012). Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development, 139, 3142–3146.

    CAS  PubMed  Google Scholar 

  • Gilmour, D., Knaut, H., Maischein, H. M., & Nüsslein-Volhard, C. (2004). Towing of sensory axons by their migrating target cells in vivo. Nature Neuroscience, 7, 491–492.

    CAS  PubMed  Google Scholar 

  • Gosline, W. A. (1970). A reinterpretation of the teleostean fish order Gobiesosiformes. Proceedings of the California Academy of Sciences, 38, 363–382.

    Google Scholar 

  • Graham-Smith, W. (1978). On the lateral lines and dermal bones in the parietal region of some crossopterygian and dipnoan fishes. Philosophical Transactions of the Royal Society of London, 282, 41–105.

    Google Scholar 

  • Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy—the resurrection of Holostei. American Society of Ichthyologists and Herpetologists, Lawrence, KS. Special Publication no. 6.

    Google Scholar 

  • Grande, L., & Bemis, W. E. (1991). Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comment on the interrelationships of Acipenseriformes. Journal of Vertebrate Paleontology, Special Memoir no. 1, 11 (Supplement), 1–121.

    Google Scholar 

  • Grande, L., & Bemis, W. E. (1998). A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Journal of Vertebrate Paleontology, Special Memoir no. 4, 18 (Supplement), 1–690 + ix.

    Google Scholar 

  • Grant, K. A., Raible, D. W., & Piotrowski, T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron, 45, 69–80.

    CAS  PubMed  Google Scholar 

  • Gray, J. A. B., & Best, A. C. G. (1989). Patterns of excitation of the lateral line of the ruffe. Journal of the Marine Biological Association of the United Kingdom, 69, 289–306.

    Google Scholar 

  • Gray, J. A. B., & Denton, E. J. (1991). Fast pressure pulses and communication between fish. Journal of the Marine Biological Association of the United Kingdom, 71, 83–106.

    Google Scholar 

  • Greene, C. W. (1899). The phosphorescent organs in the toadfish, Porichthys notatus Girard. Journal of Morphology, 15, 667–696.

    Google Scholar 

  • Gregory, W. K. (1933). Fish skulls: A study of the evolution of natural mechanisms. Transactions of the American Philosophical Society, 23, 75–481.

    Google Scholar 

  • Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. J., Heisenberg, C. P., Kelsh, R. N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., & Nüsslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish. Development, 123, 1–36.

    CAS  PubMed  Google Scholar 

  • Halama, L. (1977). Anatomical structure of the lateral-line organs and related bones in the Gadidae (Pisces). Acta Biologica Cracoviensia Series Zoologia, 20, 41–63.

    Google Scholar 

  • Hama, K. (1978). A study of the fine structure of the pit organ of the common Japanese sea eel Conger myriaster. Cell and Tissue Research, 189, 375–388.

    CAS  PubMed  Google Scholar 

  • Hensel, K. (1976). Morphology of lateral line canal system of the genera Abramis, Blicca and Vimba with regard to their ecology and systematic position. Acta Universitatis Carolinae Biologica, 1975–1976, 105–149.

    Google Scholar 

  • Hensel, K. (1986). Morphologie et interprétation des canaux et canalicules sensoriels céphaliques de Latimeria chalumnae Smith, 1939 (Osteichthyes, Crossopterygii, Coelacathiformes). Bulletin du Museum National d’Histoire Naturelle. 4e Serie. Section A. Zoologie, Biologie et Ecologie Animales, 2, 379–407.

    Google Scholar 

  • Hensel, K., & Balon, E. K. (2001). The sensory canal systems of the living coelocanth, Latimeria chalumnae: A new installment. Environmental Biology of Fishes, 61, 117–124.

    Google Scholar 

  • Hernández, P. P., Olivar, F. A., Sarrazn, A. F., Sandoval, P. C., & Allende, M. L. (2007). Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker Sox2 and proliferation-dependent and -independent mechanisms of hair cell renewal. Developmental Neurobiology, 67, 637–654.

    PubMed  Google Scholar 

  • Higgs, D. M., Rollo, A. K., Souza, M. J., & Popper, A. N. (2003). Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). Journal of the Acoustical Society of America, 113, 1145–1154.

    PubMed  Google Scholar 

  • Hilton, E. J., Grande, L., & Bemis, W. E. (2011). Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). Fieldiana, Life and Earth Sciences, 3, 1–168.

    Google Scholar 

  • Hoekstra, D., & Janssen, J. (1985). Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environmental Biology of Fishes, 12, 111–117.

    Google Scholar 

  • Holmgren, N. (1940). Studies on the head in fishes: Embryological, morphological and phylogenetical researches (Part I). Acta Zoologica, 21, 51–267.

    Google Scholar 

  • Honkanen, T. (1993). Comparative study of the lateral-line system of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius). Acta Zoologica (Stockholm), 74, 331–336.

    Google Scholar 

  • Hoss, D. E. & Blaxter, J. H. S. (1982). Development and function of the swimbladder-inner ear system in the Atlantic menhaden, Brevoortia tyrannus (Latrobe). Journal of Fish Biology, 21, 131–142.

    Google Scholar 

  • Hoyt, R. D. (1972). Anatomy and osteology of the cephalic lateral-line system of the silverjaw minnow, Ericymba buccata (Pisces: Cyprinidae). Copeia, 1972, 812–816.

    Google Scholar 

  • Ishikawa, Y. (1994). Innervation of lateral line system in the medaka, Oryzias latipes. The Fish Biology Journal Medaka, 6, 17–24.

    Google Scholar 

  • Iwai, T. (1964). Development of cupulae in free neuromasts of the Japanese medaka, Oryzias latipes (Temminck et Schlegel). Bulletin of the Misaki Marine Biological Institute, Kyoto University, 5, 31–37.

    Google Scholar 

  • Jakubowski, M. (1963). Cutaneous sense organs of fishes. I. The lateral-line organs in the stone-perch (Acerina cernua L.). Acta Biologica Cracoviensia, Series Zoologia, 6, 59–78.

    Google Scholar 

  • Jakubowski, M. (1966). Cutaneous sense organs of fishes. V. Canal system of lateral-line organs in Mullus barbatus ponticus Essipov and Spicara smaris L. (topography, innervation, structure). Acta Biologica Cracoviensia, Series Zoologia, 9, 225–237.

    Google Scholar 

  • Jakubowski, M. (1967a). Cutaneous sense organs of fishes. Part VI. The structure, topography and innervation of lateral line organs in the burbot, Lota lota. Acta Biologica Cracoviensia, Series Zoologia, 10, 39–47.

    Google Scholar 

  • Jakubowski, M. (1967b). Cutaneous sense organs of fishes. Part VII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biologica Cracoviensia, Series Zoologia, 10, 69–81.

    Google Scholar 

  • Jakubowski, M. (1974). Structure of the lateral-line canal system and related bones in the berycoid fish Hoplostethus mediteranneus Cuv. et Val. (Trachichthyidae, Pisces). Acta Anatomica, 87, 261–274.

    CAS  PubMed  Google Scholar 

  • Janssen, J. (2004). Lateral line sensory ecology. In G. von der Emde, G., J. Mogdans, & B. G. Kapoor (Eds.), The senses of fish—Adaptations for the reception of natural stimuli (pp. 231–264). Boston: Kluwer Academic.

    Google Scholar 

  • Janssen, J., Coombs, S., Hoekstra, D., & Platt, C. (1987). Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain, Behavior and Evolution, 30, 210–229.

    CAS  PubMed  Google Scholar 

  • Jeffery, W. R. (2001). Cavefish as a model system in evolutionary developmental biology. Developmental Biology, 231, 1–12.

    CAS  PubMed  Google Scholar 

  • Jeffery, W. R. (2005). Adaptive evolution of eye degeneration in the Mexican blind cavefish. Journal of Heredity, 96, 1–12.

    Google Scholar 

  • Jeffery, W. R. (2008). Emerging model systems in evo-devo: Cavefish and microevolution of development. Evolution and Development, 10, 265–272.

    PubMed Central  PubMed  Google Scholar 

  • Johnson, S. E. (1917). Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). Journal of Comparative Neurology, 28, 1–74.

    Google Scholar 

  • Jollie, M. (1975). Development of the head skeleton and pectoral girdle in Esox. Journal of Morphology, 147, 61–88.

    CAS  PubMed  Google Scholar 

  • Jollie, M. (1984a). Development of cranial and pectoral girdle bones of Lepisosteus with a note on scales. Copeia, 1984, 476–502.

    Google Scholar 

  • Jollie, M. (1984b). Development of the head and pectoral skeleton of Polypterus with a note on scales (Pisces: Actinopterygii). Journal of Zoology, London, 204, 469–507.

    Google Scholar 

  • Jollie, M. (1984c). Development of the head skeleton and pectoral girdle of salmons, with a note on the scales. Canadian Journal of Zoology, 62, 1757–1778.

    Google Scholar 

  • Jones, W. R., & Janssen, J. (1992). Lateral line development and feeding behavior in the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Copeia, 1992, 485–492.

    Google Scholar 

  • Jordan, L. K., Kajiura, S. M., & Gordon, M. S. (2009). Functional consequences of structural differences in stingray sensory systems. Part I: Mechanosensory lateral line canals. Journal of Experimental Biology, 212, 3037–3043.

    PubMed  Google Scholar 

  • Jørgensen, J. M. (2010). Mechanoreceptive neuromasts and electroreceptive ampullary organs, In J. M. Jørgensen, & J. Joss (Eds.), The biology of lungfishes (pp. 477–492). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kanter, M., & Coombs, S. (2003). Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). Journal of Experimental Biology, 206, 59–70.

    PubMed  Google Scholar 

  • Kapoor, A. S. (1970). Development of dermal bones related to sensory canals of the head in the fishes Ophicephalus punctatus Bloch (Ophicephalidae) and Wallago attu B., & Schn. (Siluridae). Zoological Journal of the Linnean Society, 49, 69–97.

    Google Scholar 

  • Kasumyan, A. O. (2003). The lateral line in fish: Structure, function and role in behavior. Journal of Ichthyology, 43 (Supplement 2), S175–S213.

    Google Scholar 

  • Kawamura, G., Masuma S., Tezuka, N., Koiso, M., Jinbo, T., & Namba, K. (2003). Morphogenesis of sense organs in the bluefin tuna Thunnus orientalis. In H. I. Browman & A. B. Skiftesvik (Eds.), The fish big bang: Proceedings of the 26th annual larval fish conference (pp. 123–135). Bergen, Norway: Institute of Marine Research.

    Google Scholar 

  • Kelly, J. P., & van Netten, S. M. (1991). Topography and mechanics of the cupula in the fish lateral line. I. Variation of cupular structure and composition in three dimensions. Journal of Morphology, 207, 23–36.

    CAS  PubMed  Google Scholar 

  • Kemp, A. (1999). Sensory lines and rostral skull bones in lungfish of the family Neoceratodontidae (Osteichthyes: Dipnoi). Alcheringa, 23, 289–307.

    Google Scholar 

  • Kershaw, D. R. (1970). The cranial osteology of the ‘butterfly fish’, Pantodon buchholzi Peters. Zoological Journal of the Linnean Society, 49, 5–19.

    Google Scholar 

  • Konings, A. (1990). Koning’s book of cichlids and other Fishes of Lake Malawi. Neptune City, NJ: TFH Publications.

    Google Scholar 

  • Konings, A. (2007). Malaŵi cichlids in their natural habitat, 4th ed. El Paso, TX:: Cichlid Press.

    Google Scholar 

  • Lane, E. B., & Whitear, M. (1982). Sensory structures at the surface of fish skin. II. Lateralis system. Zoological Journal of the Linnean Society, 76, 19–28.

    Google Scholar 

  • Lannoo, M. J. (1985). Neuromast topography in Ambystoma larvae. Copeia, 1985, 535–539.

    Google Scholar 

  • Lannoo, M. J. (1987a). Neuromast topography in anuran amphibians. Journal of Morphology, 191, 115–129.

    Google Scholar 

  • Lannoo, M. J. (1987b). Neuromast topography in urodele amphibians. Journal of Morphology, 191, 247–263.

    Google Scholar 

  • Lannoo, M. J. (1988). The evolution of the amphibian lateral line system and its bearing on amphibian phylogeny. Zeitschrift fur Zoologische Systematik und Evolutionforschung, 26, 128–134.

    Google Scholar 

  • Lannoo, M. J. (2009). Nervous and sensory systems in sub-Arctic and Antarctic snailfishes of the genus Paraliparis (Teleostei: Scorpaeniformes: Liparidae). Copeia, 2009, 732–739.

    Google Scholar 

  • Laverack, M. S., & Bevan, M. D. (1991). The lateral line of the butterfish, Pholis gunnellus L. Marine Behavior and Physiology, 19, 15–26.

    Google Scholar 

  • Lawry, J. V., Jr. (1972a). A presumed near field pressure receptor in the snout of the lantern fish, Tarletonbeania crenularis (Myctophidae). Marine Behaviour and Physiology, 1, 295–303.

    Google Scholar 

  • Lawry, J. V., Jr. (1972b). The trigeminofacial innervation of the cephalic lateral line organs and photophores of the lantern fish Tarletonbeania crenularis (Myctophidae). Marine Behaviour and Physiology, 1, 285–293.

    Google Scholar 

  • Lekander, B. (1949). The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zoologica (Stockholm), 30, 1–131.

    Google Scholar 

  • Leydig, F. (1850). Ueber die Schleimkanale der Knochenfische. Müller’s Archiv fur Anatomie, Physiologie und Wissenschaftliche Medicin, Jahrgang 1850, 170–181.

    Google Scholar 

  • Lisney, T. J. (2010). A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Reviews in Fish Biology and Fisheries, 20, 571–590.

    Google Scholar 

  • Lopez-Schier, H., & Hudspeth, A. J. (2005). Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proceedings of the National Academy of Sciences of the USA, 102, 1496–1501.

    CAS  PubMed  Google Scholar 

  • Lopez-Shier, H., Starr, C. J., Kappler, F. A., Kollmar, R., & Hudspeth, A. J. (2004). Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish. Developmental Cell, 7, 401–412.

    Google Scholar 

  • Lu, Z., Popper, A. N., & Fay, R. R. (1996). Behavioral detection of acoustic particle motion by a teleost fish, Astronotus ocellatus: Sensitivity and directionality. Journal of Comparative Physiology A, 179, 227–233.

    CAS  Google Scholar 

  • Lundberg, J. G., & Mago-Leccia, F. (1986). A review of Rhabdolichops (Gymnotiformes, Sternopygidae), a genus of South American freshwater fishes, with decriptions of four new species. Proceedings of the Academy of Natural Sciences of Philadelphia, 138, 53–85.

    Google Scholar 

  • Ma, E. Y., & Raible, D. W. (2009). Signaling pathways regulating zebrafish lateral line development. Current Biology, 19, R381–R386.

    CAS  PubMed  Google Scholar 

  • Ma, E. Y., Rubel, E. W., & Raible, D. W. (2008). Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. Journal of Neuroscience, 28, 2261–2273.

    CAS  PubMed  Google Scholar 

  • Makushok, V. M. (1961). [Some peculiarities in the structure of the seismosensory system of the northern blenniids (Stichaeoidae, Blennioidei, Pisces).]. Trudy Instituta Okeanologii, 43, 225–269. [English translation by A. R. Gosline, published by United States National Museum].

    Google Scholar 

  • Marshall, N. J. (1965). Systematic and biological studies of the Macrourid fishes (Anacanthini-Teleostii). Deep Sea Research, 12, 299–322.

    Google Scholar 

  • Marshall, N. J. (1986). Structure and general distribution of free neuromasts in the black goby, Gobius niger. Journal of the Marine Biological Association of the United Kingdom, 66, 323–333.

    Google Scholar 

  • Marshall, N. J. (1996). The lateral line systems of three deep-sea fish. Journal of Fish Biology, 49 (Supplement), 239–258.

    Google Scholar 

  • Maruska, D. P. (2001). Morphology of the mechanosensory lateral line system in elasmobranch fishes: Ecological and behavioral considerations. Environmental Biology of Fishes, 60, 47–75.

    Google Scholar 

  • Maruska, K. P., & Tricas, T. C. (1998). Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: The mechanotactile hypothesis. Journal of Morphology, 238, 1–22.

    Google Scholar 

  • Maruska, K. P., & Tricas, T. C. (2004). Test of the mechanotactile hypothesis: Neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray. Journal of Experimental Biology, 207, 3463–3476.

    PubMed  Google Scholar 

  • McAllister, D. E. (1968). Mandibular pore pattern in the sculpin family Cottidae. Bulletin of the National Museum of Canada, 223, 58–69.

    Google Scholar 

  • McDonnell, R. (1871). On the system of the “lateral line” in fishes. Transactions of the Royal Irish Academy, Science, 24, 161–188.

    Google Scholar 

  • Metcalfe, W. K. (1989). Organization and development of the zebrafish posterior lateral line. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 147–159). New York: Springer-Verlag.

    Google Scholar 

  • Metcalfe, W. K., Kimmel, C. B., & Schabtach, E. (1985). Anatomy of the posterior lateral line system in young larvae of the zebrafish. Journal of Comparative Neurology, 233, 377–389.

    CAS  PubMed  Google Scholar 

  • Meyer, M. K., Riehl, R., & Zetzsche, H. (1987). A revision of the cichlid fishes of the genus Aulonocara Regan, 1922 from Lake Malawi, with descriptions of six new species (Pisces, Perciformes, Cichlidae). Courier Forschungsinstitut Senckenberg, 94, 7–53.

    Google Scholar 

  • Modrell, M. S., Bemis, W. E., Northcutt, R. G., Davis, M. C., & Baker, C. V. H. (2011a). Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications, 2, 496.

    PubMed  Google Scholar 

  • Modrell, M. S., Buckley, D., & Baker, C. V. (2011b). Molecular analysis of neurogenic placode development in a basal ray-finned fish. Genesis, 49, 278–294.

    CAS  PubMed  Google Scholar 

  • Mogdans J., & Nauroth I. E. (2011). The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system. Journal of Comparative Physiology A, 197, 959–968.

    Google Scholar 

  • Montgomery, J., & Saunders, A. J. (1985). Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proceedings of the Royal Society of London B: Biological Sciences, 224, 197–208.

    CAS  PubMed  Google Scholar 

  • Montgomery, J., Coombs, S., & Janssen, J. (1994). Form and function relationships in lateral line systems: Comparative data from six species of Antarctic notothenioid fish. Brain, Behavior and Evolution, 44, 299–306.

    CAS  PubMed  Google Scholar 

  • Montgomery, J., Coombs, S., & Baker, C. F. (2001). The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environmental Biology of Fishes, 62, 87–96.

    Google Scholar 

  • Moore, G. A., & Burris, W. E. (1956). Description of the lateral-line system of the pirate perch, Aphredoderus sayanus. Copeia, 1956, 18–20.

    Google Scholar 

  • Moore, J. A. (1993). Phylogeny of the Trachichthyiformes (Teleostei: Percomorpha). Bulletin of Marine Sciences, 52, 114–136.

    Google Scholar 

  • Moore, M. E., & Webb, J. F. (2008). Dermal bone remodeling in the cranial lateral line canals of zebrafish: The role of osteoclasts. Integrative and Comparative Biology, 47, e142.

    Google Scholar 

  • Moy-Thomas, J. A. (1941). Development of the frontal bones of the rainbow trout. Nature, 147, 681–682.

    Google Scholar 

  • Mukai, Y., & Kobayashki, H. (1992). Cupular growth rate of free neuromasts in three species of cyprinid fish. Nippon Suisan Gakkaishi, 58, 1849–1853.

    Google Scholar 

  • Mukai, Y., & Kobayashki, H. (1995). Development of free neuromasts with special reference to sensory polarity in larvae of the willow shiner, Gnathopogon elongates caerulescens (Teleostei, Cyprinidae). Zoological Science, 12, 125–131.

    CAS  PubMed  Google Scholar 

  • Mukai, Y., Yoshikawa, H., & Kobayashi, H. (1994). The relationship between the length of the cupulae of free neuromasts and feeding ability in larvae of the willow shiner Gnathopogon elongates caerulescens (Teleostei, Cyprinidae). Journal of Experimental Biology, 197, 399–403.

    PubMed  Google Scholar 

  • Münz, H. (1979). Morphology and innervation of the lateral line system in Sarotherodon niloticus (L.) (Cichlidae, Teleostei). Zoomorphologie, 93, 73–86.

    Google Scholar 

  • Münz, H. (1989). Functional organization of the lateral line periphery. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 285–298). New York: Springer-Verlag.

    Google Scholar 

  • Nakae, M., & Sasaki, K. (2005). The lateral line system and its innervation in the boxfish Ostracion immaculatus (Tetraodontiformes: Ostraciidae): Description and comparisons with other tetraodontiform and perciform conditions. Ichthyological Research, 52, 343–353.

    Google Scholar 

  • Nakae, M., & Sasaki, K. (2006). Peripheral nervous system of the ocean sunfish, Mola mola (Tetraodontiformes: Molidae). Ichthyological Research, 53, 233–246.

    Google Scholar 

  • Nakae, M., & Sasaki, K. (2010). Lateral line system and its innervation in Tetraodontiformes with outgroup comparisons: Descriptions and phylogenetic implications. Journal of Morphology, 271, 559–579.

    PubMed  Google Scholar 

  • Nakae, M., Asai, S., & Sasaki, K. (2006). The lateral line system and its innervation in Champsodon snyderi (Champsodontidae): Distribution of approximately 1000 neuromasts. Ichthyological Research, 53, 209–215.

    Google Scholar 

  • Nakae, M., Asaoka, R., Wada, H., & Sasaki, K. (2012a). Fluorescent dye staining of neuromasts in live fishes: An aid to systematic studies. Ichthyological Research, 59, 286–290.

    Google Scholar 

  • Nakae, M., Katayama, E., Asaoka, R., Hirota, M., & Sasaki, K. (2012b). Lateral line system in the triplefin Enneapterygius etheostomus (Perciformes: Tripterygiidae): New implications for taxonomic studies. Ichthyological Research, 59, 268–271.

    Google Scholar 

  • Namdaran, P, Reinhart, K. E., Owens, K. N., Raibel, D. W., & Rubel, E. W. (2012). Identification of modulators of hair cell regeneration in the zebrafish lateral line. The Journal of Neuroscience, 32, 3516–3528.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nazarkin, M. V. (2011). Morphology of two eastern Pacific eelpouts (Pisces, Zoarcidae, Lycodes) in connection with features of distribution of species with a double lateral line. Journal of Ichthyology, 51, 209–216.

    Google Scholar 

  • Nelson, G. J. (1969). Infraorbital bones and their bearing on the phylogeny and geography of osteoglossomorphs fishes. American Museum Novitates, 2394, 1–37.

    Google Scholar 

  • Nelson, G. J. (1972). Cephalic sensory canals, pitlines, and the classification of esocoid fishes, with notes on galaxiids and other teleosts. American Museum Novitates, 2492, 1–49.

    Google Scholar 

  • Nelson, G. J. (1983). Anchoa argentivittata, with notes on other eastern Pacific anchovies and the Indo-Pacific genus Encrasicholina. Copeia, 1983, 48–54.

    Google Scholar 

  • Nelson, G. J. (1984). Notes on the rostral organ of anchovies (Family Engraulidae). Japanese Journal of Ichthyology, 31, 86–87.

    Google Scholar 

  • Nelson, J. S. (2006). Fishes of the world, 4th ed., Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Nielsen, J. G., & Bertelsen, E. (1985). The gulper-eel family Saccopharyngidae (Pisces, Anguilliformes). Steenstrupia, 11, 157–206.

    Google Scholar 

  • Northcutt, R. G. (1989). The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 17–78). New York: Springer-Verlag.

    Google Scholar 

  • Northcutt, R. G. (1997). Evolution of gnathostome lateral line ontogenies. Brain, Behavior and Evolution, 50, 25–37.

    CAS  PubMed  Google Scholar 

  • Northcutt, R. G. (2003). Development of the lateral line system in the channel catfish. In H. I. Browman, & A. B. Skiftesvik (Eds)., The big fish bang: Proceedings of the 26th annual larval fish conference (pp. 137–159). Bergen, Norway: Institute of Marine Research.

    Google Scholar 

  • Northcutt, R. G., & Bemis, W. E. (1993). Cranial nerves of the coelocanth, Latimeria chalumnae [Osteichthyes: Sarcopterygii: Actinistia] and comparisons with other craniata. Brain, Behavior and Evolution, 42 (Supplement 1), 1–77.

    Google Scholar 

  • Northcutt, R. G., & Bleckmann, H. (1993). Pit organs in axolotls: A second class of lateral line neuromasts. Journal of Comparative Physiology A, 172, 439–446.

    CAS  Google Scholar 

  • Northcutt, R. G., Catania, K. C., & Riley, B. B. (1994). Development of lateral line organs in the axolotl. Journal of Comparative Neurology, 340, 480–514.

    CAS  PubMed  Google Scholar 

  • Northcutt, R. G., Brändle, K., & Fritzsch, B. (1995). Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Developmental Biology, 168, 358–373.

    CAS  PubMed  Google Scholar 

  • Northcutt, R. G., Holmes, P. H., & Albert, J. S. (2000). Distribution and innervation of lateral line organs in the channel catfish. Journal of Comparative Neurology, 421, 570–592.

    CAS  PubMed  Google Scholar 

  • Nuñez, V. A., Sarrazin, A. F., Cubedo, N., Allende, M. L., Dambly-Chaudière, C., & Ghysen, A. (2009). Postembryonic development of the posterior lateral line in the zebrafish. Evolution and Development, 11, 391–404.

    PubMed  Google Scholar 

  • Okamura, A., Oka, H. P., Yamada, Y., Utoh, T., Mikawa, N., Horie, N., & Tanaka, S. (2002). Development of lateral line organs in leptocephali of the freshwater eel Anguilla japonica (Teleostei, Anguilliformes). Journal of Morphology, 254, 81–91.

    PubMed  Google Scholar 

  • Omarkhan, M. (1948). The lateral sensory canals of larval Notopterus. Proceedings of the Zoological Society of London, 118, 938–972.

    Google Scholar 

  • O’Neill, P., McLole, R. G., & Baker, C. V. H. (2007). A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Developmental Biology 304, 156–181.

    PubMed  Google Scholar 

  • Ota, K. G., Kuraku, S., & Kuratani, S. (2007). Hagfish embryology with reference to the evolution of neural crest. Nature, 446, 672–675.

    CAS  PubMed  Google Scholar 

  • Otsuka, M., & Nagai, S. (1997). Neuromast formation in the prehatching embryos of the cod-fish, Gadus macrocephalus Tilesius. Zoological Science. 14, 475–481.

    Google Scholar 

  • Parenti, L. R. (2008). A phylogenetic analysis and taxonomic revision of ricefishes, Oryzias and relatives (Beloniformes, Adrianichthyidae). Zoological Journal of the Linnean Society, 154, 494–610.

    Google Scholar 

  • Parin, N. V., & Astakhov, D. A. (1982). Studies on the acoustico-lateralis system of beloniform fishes in connection with their systematics. Copiea, 1982, 276–291.

    Google Scholar 

  • Parker, G. J. (1904). The function of the lateral-line organs in fishes. In Contributions from the Biological Laboratory of the Bureau of Fisheries at Woods Hole, Massachusetts (pp. 183–207).

    Google Scholar 

  • Paxton, J. R. (1989). Synopsis of the whalefishes (family Cetomimidae) with descriptions of four new genera. Records of the Australian Museum, 41, 135–206.

    Google Scholar 

  • Peach, M. B., & Rouse, G. W. (2000). The morphology of the pit organs and lateral line canal neuromasts of Mustelus antarcticus (Chondrichthyes: Triakidae). Journal of the Marine Biological Association of the United Kingdom, 80, 155–162.

    Google Scholar 

  • Peach, M. B., & Marshall, N. J. (2009). The comparative morphology of pit organs in elasmobranchs. Journal of Morphology, 270, 688–701.

    CAS  PubMed  Google Scholar 

  • Pehrson, T. (1944a). The development of latero-sensory canal bones in the skull of Esox lucius. Acta Zoologica (Stockholm), 25, 135–157.

    Google Scholar 

  • Pehrson, T. (1944b). Some observations on the development and morphology of the dermal bones in the skull of Acipenser and Polyodon. Acta Zoologica (Stockholm), 25, 27–48.

    Google Scholar 

  • Peters, H. M. (1973). Anatomie und Entwicklungsgeschichte des Laterallissystems von Tilapia (Pisces, Cichlidae). Zeitschrift fur Morphologie der Tiere, 74, 89–161.

    Google Scholar 

  • Pichon, R., & Ghysen, A. (2004). Evolution of posterior lateral line development in fish and amphibians. Evolution & Development, 6, 187–193.

    Google Scholar 

  • Pietsch, T. W. (2009). Oceanic anglerfishes: Extraordinary diversity in the deep sea. Berkeley: University of California Press.

    Google Scholar 

  • Piotrowski, T., & Northcutt, R. G. (1996). The cranial nerves of the Senegal bichir, Polypterus senegalus (Osteichthyes: Actinopterygii: Cladistia). Brain, Behavior and Evolution, 47, 55–102.

    CAS  PubMed  Google Scholar 

  • Poling, K. R., & Fuiman, L. A. (1997). Sensory development and concurrent behavioural changes in Atlantic croaker larvae. Journal of Fish Biology, 51, 402–421.

    Google Scholar 

  • Popper, A. N., & Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273, 25–36.

    PubMed  Google Scholar 

  • Potthoff, T. (1984). Clearing and staining techniques. In H. G. Moser (Ed.), Ontogeny and systematics of fishes (pp. 35–37). Lawrence, KS: Allen Press.

    Google Scholar 

  • Poulson, T. L. (1963). Cave adaptations in amblyopsid fishes. American Midland Naturalist. 70, 257–290.

    Google Scholar 

  • Prokofiev, A. M., & Kukuev, E. I. (2009). Systematics and distribution of black swallowers of the genus Chiasmodon (Perciformes: Chiasmodontidae). Journal of Ichthyology, 49, 899–939.

    Google Scholar 

  • Puzdrowski, R. L. (1989). Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain, Behavior and Evolution, 34, 110–131.

    CAS  PubMed  Google Scholar 

  • Raible, D. W., & Kruse, G. J. (2000). Organization of the lateral line system in embryonic zebrafish. Journal of Comparative Neurology, 421, 189–198.

    CAS  PubMed  Google Scholar 

  • Rass, T. S. (1970). Greenlings: Taxonomy, biology, interoceanic transplantation. Transactions of the Institute of Oceanology, Vol. 59. Jerusalem: Israel Program for Scientific Translations. (Translated from Russian.)

    Google Scholar 

  • Reno, H. W. (1966). The infraorbital canal, its lateral-line ossicles and neuromasts, in the minnows Notropis volucellus and N. buchanani. Copeia, 1966, 403–413.

    Google Scholar 

  • Reno, H. W. (1969). Cephalic lateral-line systems of the cyprinid genus Hybopsis. Copiea, 1969, 736–773.

    Google Scholar 

  • Reno, H. W. (1971). The lateral-line system of the silverjaw minnow, Ericymba buccata Cope. Southwestern Naturalist, 15, 347–358.

    Google Scholar 

  • Rosen, D. E., & Mendelson, J. R. (1960). The sensory canals of the head in poeciliid fishes (Cyprinodontiformes), with reference to dentitional types. Copeia, 1960, 203–210.

    Google Scholar 

  • Roth, A. (2010). Development of the lateral line mechanoreceptors in the catfish Silurus glanis. Naturwissenschaften, 97, 645–653.

    CAS  PubMed  Google Scholar 

  • Rouse, G. W., & Pickles, J. O. (1991a). Paired development of hair cells in neuromasts of the teleost lateral line. Proceedings of the Royal Society of London, 246, 123–128.

    CAS  Google Scholar 

  • Rouse, G. W., & Pickles, J. O. (1991b). Ultrastructure of free neuromasts of Bathygobius fuscus (Gobiidae) and canal neuromasts of Apogon cyanosoma (Apogonidae). Journal of Morphology, 209, 111–120.

    Google Scholar 

  • Sakamoto, K. (1984). Interrelationships of the family Pleuronectidae (Pisces: Pleuronectiformes). Memoirs of the Faculty of Fisheries: Hokkaido University (Japan), 31(1–2), 95–215.

    Google Scholar 

  • Sapède, D., Gompel, N., Dambly-Chaudière, C., & Ghysen, A. (2002). Cell migration in the postembryonic development of the fish lateral line. Development, 129, 605–615.

    PubMed  Google Scholar 

  • Sasaki, K., Tanaka, T., & Takata, Y. (2006). Cranial morphology of Ateleopus japonicus (Ateleopodidae: Ateleopodiformes), with a discussion on metamorphic mouth migration and lampridiform affinities. Ichthyological Research, 53, 254–263.

    Google Scholar 

  • Schaefer, S. A., & Aquino, A. E. (2000). The postotic laterosensory canal pterotic branch homology in catfishes. Journal of Morphology, 246, 213–227.

    Google Scholar 

  • Schemmel, C. (1973). Les organs sensoriels cutanes du genre Astyanax (Pisces, Characidae) ches les formes occupant des biotopes souterrains. Annales de Spéléologie, 28, 209–219.

    Google Scholar 

  • Schlosser, G. (1999). Loss of ectodermal competence for lateral line placode formation in the direct developing frog, Eleutherodactylus coqui. Developmental Biology, 213, 354–369.

    CAS  PubMed  Google Scholar 

  • Schlosser, G. (2010). Making senses: Development of vertebrate cranial placodes. Internatiional Review of Cell and Molecular Biology, 283, 129–234.

    CAS  Google Scholar 

  • Schmitz, A., Bleckmann, H., & Mogdans, J. (2008). Organization of the superficial neuromast system in goldfish, Carrasius auratus. Journal of Morphology, 269, 751–761.

    PubMed  Google Scholar 

  • Schuster, K., Dambly-Chaudière, C., & Ghysen, A. (2010). Glial cell line-derived neurotrophic factor defines the path of developing and regenerating axons in the lateral line system of zebrafish. Proceedings of the National Academy of Sciences of the USA, 107, 19531–19536.

    CAS  PubMed  Google Scholar 

  • Schwalbe, M. A. B., Bassett, D. K., & Webb, J. F. (2012). Feeding in the dark: Lateral line mediated feeding behavior in the peacock cichlid, Aulonocara stuartgranti. Journal of Experimental Biology, 215, 2060–2071.

    PubMed  Google Scholar 

  • Shibuya, A., Zuanon, J., De Araújo, M. L. G., & Tanaka, S. (2010). Morphology of lateral line canals in Neotropical freshwater stingrays (Chondrichthyes: Potamotraygonidae) from Negro River, Brazilian Amazon. Neotropical Ichthyology, 8, 867–876.

    Google Scholar 

  • Sideleva, V. G. (1981). Structural features of the seismosensory system of freshwater sculpins and Baikal oil-fishes (Cottidae and Comephoridae) in connection with a pelagic mode of life. Journal of Ichthyology, 20, 119–124.

    Google Scholar 

  • Siming, D., & Hongxi, Z. (1986). Comparative studies of the lateral line canal system of families to be related with the Carangidae. In T. Uyeno, R. Arai, T. Taniuchi, & K. Matsuura (Eds.), Indo-Pacific fish biology: Proceedings of the second international conference on Indo-Pacific fishes (pp. 561–569). Tokyo: Ichthyological Society of Japan.

    Google Scholar 

  • Simmons, A. M., Costa, L. M., & Gerstein, H. B. (2004). Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis). Journal of Comparative Physiology A, 190, 747–758.

    Google Scholar 

  • Sire, J. Y., & Akimenko, M. A. (2004). Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). International Journal of Developmental Biology, 48, 233–247.

    CAS  PubMed  Google Scholar 

  • Sisneros, J. A. (2009). Adaptive hearing in the vocal plainfin midshipman fish: Getting in tune for the breeding season and its implications for acoustic communication. Integrative Zoology, 4, 33–42.

    PubMed  Google Scholar 

  • Smith, S. C., Lannoo, M. J., & Armstrong, J. B. (1988). Lateral-line neuromast development in Ambystoma mexicanum and a comparison with Rana pipiens. Journal of Morphology, 198, 367–379.

    Google Scholar 

  • Smith, W. L., Webb, J. F., & Blum, S. D. (2003). The evolution of the laterophysic connection with a revised phylogeny and taxonomy of butterflyfishes (Teleost: Chaetodontidae). Cladistics, 19, 287–306.

    Google Scholar 

  • Song, J., & Northcutt, R. G. (1991). Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain, Behavior and Evolution, 37, 10–37.

    CAS  PubMed  Google Scholar 

  • Song, W., & Song, J. (2012). Morphological structure and peripheral innervation of the lateral line system in the Siberian sturgeon (Acipenser baerii). Integrative Zoology, 7, 83–93.

    PubMed  Google Scholar 

  • Song, J., Yan, H. Y., & Popper, A. N. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 91, 63–71.

    CAS  PubMed  Google Scholar 

  • Stephens, R. R. (1985). The lateral line system of the gizzard shad, Dorosoma cepedianum Lesueur (Pisces: Clupeidae). Copeia, 1985, 540–556.

    Google Scholar 

  • Stephens, R. R. (2010). A description of the cephalic lateralis system of Anchoa mitchilli (Valenciennes) (Clupeomorpha: Engraulidae) with identification of synapomorphies for the Engraulidae. Proceedings of the Biological Society of Washington, 123, 8–16.

    Google Scholar 

  • Suli, A., Watson, G. M., Rubel, E. W., & Raible, D. W. (2012). Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One, 7, 1–6.

    Google Scholar 

  • Takeuchi, H., Tokuda, K., Kanagawa, N., & Hosoya, K. (2011). Cephalic lateral line canal system of the golden venus chub, Hemigrammocypris rasborella (Teleostei: Cypriniformes) Ichthyological Research, 58, 175–179.

    Google Scholar 

  • Tamanaka, Y., Nakae, M., Fukuda, E., & Sasaki, K. (2010). Monophyletic origin of the dorsally arched lateral line in Teleostei: Evidence from nerve innervation patterns. Ichthyological Research, 57, 49–61.

    Google Scholar 

  • Tarby, M. L., & Webb, J. F. (2003). Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus. Journal of Morphology, 254, 44–57.

    Google Scholar 

  • Tekye, T. (1989). Learning and remembering the environment in the blind cave fish, Anoptichthys jordani. Journal of Comparative Physiology A, 164, 655–662.

    Google Scholar 

  • Tekye, T. (1990). Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain, Behavior and Evolution, 35, 23–30.

    Google Scholar 

  • Tricas, T. C., Kajiura, S. M., & Kosaki, R. K. (2006). Acoustic communication in territorial butterflyfish: Test of the sound production hypothesis. Journal of Experimental Biology, 209, 4994–5004.

    PubMed  Google Scholar 

  • van Bergeijk, W. A., & Alexander, S. (1962). Lateral line canal organs on the head of Fundulus heteroclitus. Journal of Morphology, 110, 333–346.

    Google Scholar 

  • Van Netten, S. M., & van Maarseveen, F. T. P. W. (1994). Mechanophysiological properties of the supraorbital lateral line canal in ruffe (Acerina cernua L.). Proceedings of the Royal Society of London B: Biological Sciences, 256, 239–246.

    Google Scholar 

  • Van Trump, W. J., & McHenry, M. J. (2008). The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). Journal of Experimental Biology, 211, 2105–2115.

    PubMed  Google Scholar 

  • Van Trump, W. J., Coombs, S., Duncan, K., & McHenry, M. J. (2010). Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hearing Research, 261, 42–50.

    PubMed  Google Scholar 

  • Vasconcelos, R., & Ladich, F. (2008). Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. Journal of Experimental Biology, 211, 502–509.

    PubMed  Google Scholar 

  • Vasconcelos, R. O., Fonseca, P. J., Amorim, M. C. P., & Ladich, F. (2011). Representation of complex vocalizations in the Lusitanian toadfish auditory system: Evidence of fine temporal frequency and amplitude discrimination. Proceedings of the Royal Society of London B: Biological Sciences, 278, 826–834.

    Google Scholar 

  • Vischer, H. A. (1989). The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). I. The mechanoreceptive lateral-line system. Brain, Behavior, and Evolution, 33, 205–222.

    Google Scholar 

  • Voronina, E. P. (2009). Structure of lateral-line scales in representatives of families of the order Pleuronectiformes. Journal of Ichthyology, 49, 940–961.

    Google Scholar 

  • Voronina, E. P., & Hughes, D. R. (2011). Types and developmental pathways of lateral line scales in some teleost species. Acta Zoologica (Stockholm), DOI: 10.1111/j.1463–6395.2011.00534.x

    Google Scholar 

  • Wada, H., Hamaguchi, S., & Sakaizumi, M. (2008). Development of diverse lateral line patterns on the teleost caudal fin. Developmental Dynamics, 237, 2889–2902.

    CAS  PubMed  Google Scholar 

  • Wada, H., Ghysen, A., Satou, C., Higashijima, S., Kawakami, K., Hamaguchi, S., & Sakaizumi, M. (2010). Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Developmental Biology, 340, 583–594.

    CAS  PubMed  Google Scholar 

  • Wahnschaffe, U., Bartsch, U., & Fritzsch, B. (1987). Metamorphic changes in the lateral-line system of Anura. Anatomy and Embryology, 175, 431–442.

    CAS  PubMed  Google Scholar 

  • Wark, A. R., & Peichel, C. L. (2010). Lateral line diversity among ecologically divergent threespine stickleback populations. Journal of Experimental Biology, 213, 108–117.

    CAS  PubMed  Google Scholar 

  • Webb, J. F. (1988). Comparative morphology and evolution of the lateral line system in the labroid fishes (Pisces: Perciformes). Ph.D. dissertation, Boston University.

    Google Scholar 

  • Webb, J. F. (1989a). Developmental constraints and evolution of the lateral line system in teleost fishes. In S. Coombs, P. Görner, & H. Münz, H. (Eds.), The mechanosensory lateral line: neurobiology and evolution (pp. 79–98). New York: Springer-Verlag.

    Google Scholar 

  • Webb, J. F. (1989b). Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes. Brain, Behavior and Evolution, 33, 34–53.

    CAS  PubMed  Google Scholar 

  • Webb, J. F. (1989c). Neuromast morphology and lateral line trunk ontogeny in two species of cichlids: An SEM study. Journal of Morphology, 202, 53–68.

    CAS  PubMed  Google Scholar 

  • Webb, J. F. (1990a). Comparative morphology and evolution of the lateral line system in the Labridae (Perciformes: Labroidei). Copeia, 1990, 137–146.

    Google Scholar 

  • Webb, J. F. (1990b). Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes. Journal of Zoology (London), 221, 405–418.

    Google Scholar 

  • Webb, J. F. (1998). Laterophysic connection: A unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia, 1998, 1032–1036.

    Google Scholar 

  • Webb, J. F. (1999). Diversity of fish larvae in development and evolution. In B. K. Hall & M. H. Wake (Eds.), Origin and evolution of larval forms (pp. 109–158). San Diego: Academic Press.

    Google Scholar 

  • Webb, J. F. (2000). Mechanosensory lateral line: Functional morphology and neuroanatomy. In G. Ostrander (Ed.), Handbook of experimental animals: - The laboratory fish (pp. 236–244). London: Academic Press.

    Google Scholar 

  • Webb, J. F. (2011). Lateral line structure. In A. P. Farrell (Ed.), Encyclopedia of fish physiology: From genome to environment, Vol. 1 (pp. 336–346). San Diego: Academic Press.

    Google Scholar 

  • Webb, J. F., & Northcutt, R. G. (1997). Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain, Behavior and Evolution, 50, 139–151.

    CAS  PubMed  Google Scholar 

  • Webb, J. F., & Shirey, J. E. (2003). Post-embryonic development of the lateral line canals and neuromasts in the zebrafish. Developmental Dynamics, 228, 370–385.

    PubMed  Google Scholar 

  • Webb, J. F., Smith, W. L., & Ketten, D. R. (2006). The laterophysic connection and swim bladder in butterflyfishes in the genus Chaetodon (Perciformes: Chaetodontidae). Journal of Morphology, 267, 1338–1355.

    PubMed  Google Scholar 

  • Webb, J. F., Montgomery, J., & Mogdans, J. (2008). Mechanosensory lateral line and fish bioacoustics. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish bioacoustics (pp. 145–182). New York: Springer-Verlag.

    Google Scholar 

  • Webb, J. F., Herman, J. L., Woods, C. F., & Ketten, D. R. (2010). The ears of butterflyfishes: Hearing generalists on noisy coral reefs? Journal of Fish Biology, 77, 1434–1451.

    Google Scholar 

  • Webb, J. F., Walsh, R. M., Casper, B., Mann, D. A., Kelly, N., & Cicchino, N. (2012). Ontogeny of the ear, hearing capabilities, and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Environmental Biology of Fishes, DOI 10.1007/s10641–012–9991–7.

    Google Scholar 

  • Weber, E. H. (1820). De aure et auditu hominis et animalium: Pars I—De aure animalium aquatilium. Leipzig: Gehard Fleischer.

    Google Scholar 

  • Weeg, M. S., & Bass, A. H. (2000). Central lateral line pathways in a vocalizing fish. Journal of Comparative Neurology, 418, 41–64.

    CAS  PubMed  Google Scholar 

  • Weeg, M. S., & Bass, A. H. (2002). Frequency response properties of lateral line SNs in a vocal fish, with evidence for acoustic sensitivity. Journal of Neurophysiology, 88, 1252–1262.

    PubMed  Google Scholar 

  • Wellenreuther, M., Brock, M., Montgomery, J., & Clements, K.D. (2010). Comparative morphology of the mechanosensory lateral line system in a clade New Zealand triplefin fishes. Brain, Behavior and Evolution, 75, 292–308.

    PubMed  Google Scholar 

  • Whitfield, T. T. (2005). Lateral line: precocious phenotypes and planar polarity. Current Biology, 15, R67–70.

    CAS  PubMed  Google Scholar 

  • Wicht, H., & Northcutt, R. G. (1995). Ontogeny of the head of the Pacific hagfish (Eptatretus stouti Myxinoidea): Development of the lateral line system. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 349, 119–134.

    CAS  PubMed  Google Scholar 

  • Williams, J. A., & Holder, N. (2000). Cell turnover in neuromasts of zebrafish larvae. Hearing Research, 143, 171–181.

    CAS  PubMed  Google Scholar 

  • Wilson, M., Montie, E. W., Mann, K. A., & Mann, D. A. (2009). Ultrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line. Journal of Experimental Biology, 212, 3422–3427.

    PubMed  Google Scholar 

  • Windsor, S. P., & McHenry, M. J. (2009). The influence of viscous hydrodynamics on the fish lateral-line system. Comparative and Integrative Biology, 49, 691–701.

    Google Scholar 

  • Windsor, S. P., Tan, D., & Montgomery, J. C. (2008). Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). Journal of Experimental Biology, 211, 2950–2959.

    PubMed  Google Scholar 

  • Wittbrodt, J, Shima, A., & Schartl, M. (2002). Medaka—A model organism from the Far East. Nature Reviews Genetics, 3, 53–64.

    CAS  PubMed  Google Scholar 

  • Wonsettler, A. L., & Webb, J. F. (1997). Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes: Hexagrammidae). Journal of Morphology, 233, 195–214.

    Google Scholar 

  • Wright, M. R. (1951). The lateral line system of sense organs. Quarterly Review of Biology, 26, 264–280.

    CAS  PubMed  Google Scholar 

  • Wueringer, B. E., Peverell, S. C., Seymour, J., Squire, L., & Collin, S. P. (2011). Sensory systems in sawfishes. 2. The lateral line. Brain, Behavior and Evolution, 78, 150–161.

    CAS  PubMed  Google Scholar 

  • Yabe, M. (1985). Comparative osteology and myology of the superfamily Cottoidea (Pisces: Scorpaeniformes) and its phylogenetic classification. Memoirs of the Faculty of Fisheries Hokkaido University, 32, 1–130.

    Google Scholar 

  • Yabumoto, Y., & Uyeno, T. (1984). Osteology of the rice fish, Oryzias latipes. Bulletin of the Kitakyushu Museum of Natural History, 5, 143–161.

    Google Scholar 

  • Yan, H. Y., & Popper, A. N. (1993). Acoustic intensity discrimination by the cichlid fish Astronotus ocellatus. Journal of Comparative Physiology, 173, 347–351.

    CAS  PubMed  Google Scholar 

  • Yasuoka, A., Hirose, Y., Yoda, H., Aihara, Y., Suwa, H., Niwa, K., Sasado, T., Morinaga, C., Deguchi, T., Henrich, T., Iwanami, N., Kunimatsu, S., Abe, K., Kondoh, H., & Furutani-Seiki, M. (2004). Mutations affecting the formation of posterior lateral line system in Medaka, Oryzias latipes. Mechanisms of Development, 121, 729–738.

    CAS  PubMed  Google Scholar 

  • Yatsu, A. (1986). Phylogeny and zoogeography of the subfamilies Xiphisterinae and Cebidichthyinae (Blennioidei, Stichaeidae). In T. Uyeno, R. Arai, T. Taniuchi, & K. Matsuura, K. (Eds.), Indo-Pacific fish biology: Proceedings of the second international conference on Indo-Pacific fishes (pp. 663–678). Tokyo: Ichthyological Society of Japan.

    Google Scholar 

  • Yoshizawa, M., Goricki, S., Soares, D., & Jeffery, W. R. (2010). Evolution of a behavioral shift mediated by SNs helps cavefish find food in darkness. Current Biology, 20, 1631–1636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zacchei, A. M., & Tavolaro, P. (1988). Lateral line system during the life cycle of Anguilla anguilla (L.). Bollettino di Zoologia, 3, 145–153.

    Google Scholar 

  • Zeddies, D. G. & Fay, R. R. (2005). Development of the acoustically evoked behavioral response in zebrafish to pure tones. Journal of Experimental Biology, 208, 1363–1372.

    PubMed  Google Scholar 

  • Zeddies, D. G., Fay, R. R., Alderks, P. W., Shaub, K. S., & Sisneros, J. A. (2010). Sound source localization by the plainfin midshipman fish, Porichthys notatus. Journal of the Acoustical Society of America, 127, 3104–3113.

    PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Dr. Karel F. Liem (Harvard University) who, through his instruction, mentorship, and enthusiasm, instilled in me a career-long interest in comparative and developmental morphology. Several colleagues provided valuable insights about the identity of the cells composing neuromasts via a lively e-mail interchange and members of the Webb Lab provided valuable comments that improved the manuscript. This work was supported by NSF grant IOS-0843307 and the College of the Environment and Life Sciences, University of Rhode Island.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline F. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Webb, J.F. (2013). Morphological Diversity, Development, and Evolution of the Mechanosensory Lateral Line System. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_12

Download citation

Publish with us

Policies and ethics