Skip to main content
Log in

Proteins of the Ras pathway as novel potential anticancer therapeutic targets

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Ras proteins are molecular switches that constitute a pivotal element in the control of cellular responses to many incoming signals, and in particular mitogenic stimulations. They act through multiple effector pathways that carry out the biological functions of Ras in cells. Since mutations that constitutively activate Ras proteins have been found in a high proportion of human malignancies and participate in oncogenesis, a number of therapeutic anticancer strategies aimed against the activity or action of Ras proteins have been developed. This paper reviews the principal aspects of the Ras signaling pathway and describes some of the attempts to develop antitumor drugs based on this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adari H, Lowy, DR, Willumsen BM, Der CJ, McCormick F. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science. 1988;240:518–21.

    PubMed  CAS  Google Scholar 

  • Ahmadian MR, Zor T, Vogt D, et al. Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc Natl Acad Sci USA. 1999;96:7065–70.

    PubMed  CAS  Google Scholar 

  • Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27(KIP1). Mol Cell Biol. 1997;17:3850–7.

    PubMed  CAS  Google Scholar 

  • Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 1993;12:339–47.

    PubMed  CAS  Google Scholar 

  • Barbacid M. Ras genes. Annu Rev Biochem. 1987;56:779–828.

    PubMed  CAS  Google Scholar 

  • Barnard D, Sun HY, Baker L, Marshall MS. In vitro inhibition of Ras-Raf association by short peptides. Biochem Biophys Res Commun. 1998;247:176–80.

    PubMed  CAS  Google Scholar 

  • Barrington RE, Subler MA, Rands E, et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol. 1998;18:85–92.

    PubMed  CAS  Google Scholar 

  • Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors RB and p53. Nature. 1998;395:124–5.

    PubMed  CAS  Google Scholar 

  • Béranger F, Paterson H, Powers S, de Gunzburg J, Hancock J. The effector domain of Rab6 plus a highly hydrophobic C-terminus is required for Golgi targeting. Mol Cell Biol. 1994;14:744–58.

    PubMed  Google Scholar 

  • Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366: 643–54.

    PubMed  CAS  Google Scholar 

  • Boriack-Sjodin PA, Margarit SM, BarSagi D, Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998;394:337–43.

    PubMed  CAS  Google Scholar 

  • Bos H. Ras oncogenes in human cancer. Cancer Res. 1989;49:4682–9.

    PubMed  CAS  Google Scholar 

  • Bourne HR. How receptors talk to trimeric G proteins. Curr Opin Cell Biol. 1997;9:134–42.

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348:125–32.

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–27.

    PubMed  CAS  Google Scholar 

  • Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997;275:1796–800.

    PubMed  CAS  Google Scholar 

  • Burgering BMT, Coffer P J. Protein kinase B (c-Akt) in phosphatodylinositol-3-OH kinase signal transduction. Nature. 1995;376:599–602.

    PubMed  CAS  Google Scholar 

  • Campbell SL, KhosraviFar R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene. 1998;17:1395–413.

    PubMed  CAS  Google Scholar 

  • Cantor S, Urano T, Feig LA. Identification and characterisation of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol. 1995;15:4578–84.

    PubMed  CAS  Google Scholar 

  • Carpenter CC, Cantley LC. Phosphoinositide kinases. Curr Opin Cell Biol. 1996;8:153–8.

    PubMed  CAS  Google Scholar 

  • Casey PJ, Seabra MC. Protein prenyltransferases. J Biol Chem. 1996;271:5289–92.

    PubMed  CAS  Google Scholar 

  • Chardin P. Small GTP-binding proteins of the Ras family. A conserved functional mechanism. Cancer Cells. 1991;3:117–26.

    PubMed  CAS  Google Scholar 

  • Chardin P, Camonis JH, Gane N, van Aelst L, Wigler SJM, Bar Sagi D. Human Sos1: a guanine nucleotide exchange factor for Ras that binds Grb2. Science. 1993;260:1338–43.

    PubMed  CAS  Google Scholar 

  • Chavrier P, Gorvel J-P, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature. 1991;353:769–72.

    PubMed  CAS  Google Scholar 

  • Chen D, Waters SB, Holt KH, Pessin JE. Sos phosphorylation and diassociation of the Grb2-Sos complex by ERK and JNK signaling pathways. J Biol Chem. 1996;271:6328–32.

    CAS  Google Scholar 

  • Choy E, Chiu VK, Silletti J, et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell. 1999;98:69–80.

    PubMed  CAS  Google Scholar 

  • Chuang E, Barnard D, Hettich L, Zhang XF, Avruch J, Marshall M. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol Cell Biol. 1994;14:5318–25.

    PubMed  CAS  Google Scholar 

  • Clark GJ, Drugan JK, Terrell RS, et al. Peptides containing a consensus Ras binding sequence from Raf-1 and the GTPase activating protein NF1 inhibit Ras function. Proc Natl Acad Sci USA. 1996;93:1577–81.

    PubMed  CAS  Google Scholar 

  • Clarke S. Protein isoprenylation at carboxyl terminal cysteine residues. Annu Rev Biochem. 1992;61:355–86.

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Vogel JP, Deschenes RJ, Stock J. Post-translational modification of the H-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferase. Proc Natl Acad Sci USA. 1988;85:4643–7.

    PubMed  CAS  Google Scholar 

  • Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol. 1999;71:479–500.

    PubMed  CAS  Google Scholar 

  • Cowsert LM. In vitro and in vivo activity of antisense inhibitors of ras: potential for clinical development. Anticancer Drug Des. 1997;12:359–71.

    PubMed  CAS  Google Scholar 

  • Cullen PJ, Hsuan JJ, Truong O, et al. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995;376:527–30.

    PubMed  CAS  Google Scholar 

  • Dai Q, Choy E, Chiu V, et al. Mammalian prenylcysteine carboxymethyl tranferase is in the endoplasmic reticulum. J Biol Chem. 1998;273:15030–4.

    PubMed  CAS  Google Scholar 

  • Daub M, Jockel J, Quack T, et al. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Mol Cell Biol. 1998;18:6698–710.

    PubMed  CAS  Google Scholar 

  • Daum G, Eisenmanntappe I, Fries HW, Troppmair J, Rapp U. The ins and outs of Raf kinases. Trends Biochem Sci. 1994;19:474–80.

    PubMed  CAS  Google Scholar 

  • Denouel Galy A, Douville EM, Warne PH, et al. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998;8:46–55.

    PubMed  CAS  Google Scholar 

  • Diaz-Meco MT, Lozano J, Municio MM, et al. Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. J Biol Chem. 1994;271:588–94.

    Google Scholar 

  • Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev. 1998;8:49–54.

    PubMed  CAS  Google Scholar 

  • Downward J, Riehl R, Wu L, Weinberg R. A. Identification of a nucleotide exchange-promoting activity for p21ras. Proc Natl Acad Sci USA. 1990;87:5998–6002.

    PubMed  CAS  Google Scholar 

  • Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol. 1999;19:1831–40.

    PubMed  CAS  Google Scholar 

  • Egan S, Weinberg RA. The pathway to signal achievement. Nature. 1993;365:781–3.

    PubMed  CAS  Google Scholar 

  • Egozi Y, Weisz B, GanaWeisz M, BenBaruch G, Kloog Y. Growth inhibition of ras-dependent tumors in nude mice by a potent ras-dislodging antagonist. Int J Cancer. 1999;80:911–18.

    PubMed  CAS  Google Scholar 

  • Franke TF, Yang SI, Chan TO, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727–36.

    PubMed  CAS  Google Scholar 

  • Franke TF, Kaplan DR, Cantley L. PI3K: downstream AK-Tion blocks apoptosis. Cell. 1997;88:435–7.

    PubMed  CAS  Google Scholar 

  • Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA. High affinity binding of inositol phosphates and phosphoinositides to the Pleckstrin homology domain of RAC protein kinase B and their influence on kinase activity. J Biol Chem. 1997;272:8474–81.

    PubMed  CAS  Google Scholar 

  • Gibbs JB, Olif, A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol. 1999;37:143–66.

    Google Scholar 

  • Gibbs JB, Pompliano DL, Mosser SD, et al. Selective inhibition of farnesyl-protein transferase blocks Ras processing in vivo. J Biol Chem. 1993;268:7617–20.

    PubMed  CAS  Google Scholar 

  • Gideon P, John J, Frech M, et al. Mutational and kinetic analyses of the GTPase activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol. 1992;12:2050–6.

    PubMed  CAS  Google Scholar 

  • Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature. 1992;358:414–17.

    PubMed  CAS  Google Scholar 

  • Haklai R, Weisz MG, Elad G, et al. Dislodgment and accelerated degradation of Ras. Biochemistry. 1998;37:1306–14.

    PubMed  CAS  Google Scholar 

  • Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279:509–14.

    PubMed  CAS  Google Scholar 

  • Hamm HE. The many faces of G protein signaling. J Biol Chem. 1998;273:669–72.

    PubMed  CAS  Google Scholar 

  • Han L, Colicelli J. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol Cell Biol. 1995;15:1318–23.

    PubMed  CAS  Google Scholar 

  • Han L, Wong D, Dhaka A, et al. Protein binding and signaling properties of RIN1 suggest a unique effector function. Proc Natl Acad Sci USA. 1997;94:4954–9.

    PubMed  CAS  Google Scholar 

  • Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989;57:1167–77.

    PubMed  CAS  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 1990;63:133–9.

    PubMed  CAS  Google Scholar 

  • Hancock J, Cadwallader K, Paterson H, Marshall C. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 1991a;10:4033–9.

    PubMed  CAS  Google Scholar 

  • Hancock JF, Cadwallader K, Marshall CJ. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 1991b;10:641–6.

    PubMed  CAS  Google Scholar 

  • Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 1998;8:573–81.

    PubMed  CAS  Google Scholar 

  • Herrmann C, Martin GA, Wittinghofer A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem. 1995;270:2901–5.

    PubMed  CAS  Google Scholar 

  • Hofer F, Fields S, Schneider C, Martin GS. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA. 1994;91:11089–93.

    PubMed  CAS  Google Scholar 

  • Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshal CJ. Activation of the MAP kinase pathway by the protein kinase raf. Cell. 1992;71:335–42.

    PubMed  CAS  Google Scholar 

  • Hu CD, Kariya K, Okada T, Qi XD, Song CH, Kataoka T. Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation. J Biol Chem. 1999;274:48–51.

    PubMed  CAS  Google Scholar 

  • Huang L, Hofer F, Martin GS, Kim SH. Structural basis for the interaction of Ras with RaIGDS. Nature Struct Biol. 1998;5:422–6.

    PubMed  CAS  Google Scholar 

  • John J, Sohmen R, Feuerstein J, Linke R, Wittinghofer A, Goody RS. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. J Biol Chem. 1990;265.

  • Joneson T, White MA, Wigler MH, Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science. 1996;271:810–12.

    PubMed  CAS  Google Scholar 

  • Jullien-Flores V, Dorseuil O, Romero F, et al. Bridging Ral GTPase to Rho pathways. J Biol Chem. 1995;270:22473–7.

    PubMed  CAS  Google Scholar 

  • Kauffman-Zeh A, RodriguezViciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature. 1997;385:544–8.

    Google Scholar 

  • Khosravi-Far R, White MA, Westwick JK, et al. Oncogenic Ras activation of Ras/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol. 1996;16:3923–33.

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams L. ralGDS family members interact with the effector loop of ras p21. Mol Cell Biol. 1994;14:7483–91.

    PubMed  CAS  Google Scholar 

  • Kim E, Ambroziak P, Otto JC, et al. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J Biol Chem. 1999;274:8383–90.

    PubMed  CAS  Google Scholar 

  • Kops G, deRuiter ND, DeVriesSmits AMM, Powell DR, Bos JL, Burgering BMT. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999;398:630–4.

    PubMed  CAS  Google Scholar 

  • Kuriyama M, Harada N, Kuroda S, et al. Identification of AF-6 and Canoe as putative targets for Ras. J Biol Chem. 1996; 271:607–10.

    PubMed  CAS  Google Scholar 

  • Lebowitz PF, Prendergast, GC. Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene. 1998;17: 1439–45.

    PubMed  CAS  Google Scholar 

  • Leevers SJ, Marshall CJ. Activation of extracellular signal-regulated kinase, ERK2, by p21 ras oncoprotein. EMBO J. 1992;11:569–74.

    PubMed  CAS  Google Scholar 

  • Leevers SJ, Paterson H, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994;369:411–14.

    PubMed  CAS  Google Scholar 

  • Lenormand P, Sardet C, Pages G, L'Allemain G, Brunet A, Poyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993;122:1079–88.

    PubMed  CAS  Google Scholar 

  • Leone G, DeGregori J, Sears R, Jakol L, Nevins JR. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature. 1997;387:422–26.

    PubMed  CAS  Google Scholar 

  • Lockyer PJ, Wennstrom S, Kupzig S, Venkateswarlu K, Downward J, Cullen PJ. Identification of the Ras GTPase-activating protein GAP1(M) as a phosphatidylinositol-3,4,5-trisphosphate protein in vivo. Curr Biol. 1999;9:265–8.

    PubMed  CAS  Google Scholar 

  • Lowy DR, Willumsen BM. Function and regulation of ras. Annu Rev Biochem. 1993;62:851–91.

    PubMed  CAS  Google Scholar 

  • Luo ZJ, Diaz B, Marshall MS, Avruch J. An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol Cell Biol. 1997;17:46–53.

    PubMed  CAS  Google Scholar 

  • Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 contains a growth factor regulated transcriptional activation domain. Cell. 1993;73:381–93.

    PubMed  CAS  Google Scholar 

  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem. 1997;272: 4378–83.

    PubMed  CAS  Google Scholar 

  • Marais R, Light Y, Mason C, Paterson H., Olson MF and Marshall CJ. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science. 1998;280: 109–12.

    PubMed  CAS  Google Scholar 

  • Marom M, Haklai R, Ben Baruch G, Marciano D, Ezogi Y, Kloog Y. Selective inhibition of Ras-dependent cell growth by farnesylthiosalicylic acid. J Biol Chem. 1995;270:22263–70.

    PubMed  CAS  Google Scholar 

  • Martegani E, Vanoni M, Zippel R, et al. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 1992;11:2151–7.

    PubMed  CAS  Google Scholar 

  • Martin G, Yatani A, Clark R, et al. GAP domains responsible for Ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science. 1992;255:192–94.

    PubMed  CAS  Google Scholar 

  • McGlade J, Brunkhorst B, Anderson D, et al. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 1993;12:3073–81.

    PubMed  CAS  Google Scholar 

  • Medema R, de Laat W, Martin G, McCormick F, Bos JL. GTPase-activating protein SH2-SH3 domains induce gene expression in a Ras-dependent fashion. Mol Cell Biol. 1992;12:3425–30.

    PubMed  CAS  Google Scholar 

  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts — many raft proteins are acylated, while few are prenylated. J Biol Chem. 1999;274: 3910–17.

    PubMed  CAS  Google Scholar 

  • Missy K, VanPoucke V, Raynal P, et al. Lipid products of phosphoinositide 3-kinase interact with rad GTPase and stimulate GDP dissociation. J Biol Chem. 1998;273:30279–86.

    PubMed  CAS  Google Scholar 

  • Moores SL, Schaber MD, Mosser SD, et al. Sequence dependence of protein isoprenylation. J. Biol. Chem. 1991;266: 14603–10.

    PubMed  CAS  Google Scholar 

  • Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997;9:174–9.

    PubMed  CAS  Google Scholar 

  • Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A. The 2.2Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature. 1995; 375:554–60.

    PubMed  CAS  Google Scholar 

  • Nassar N, Horn G, Herrmann C, Block C, Janknecht R, Wittinghofer A. Ras/Rap effector specificity determined by charge reversal. Nature Struct Biol. 1996;3:723–9.

    PubMed  CAS  Google Scholar 

  • Ohnishi M, Yamawaki-Kataoka Y, Kariya K, Tamada M, Hu CD, Kataoka T. Selective inhibition of ras interaction with its particular effector by synthetic peptides corresponding to the ras effector region. J Biol Chem. 1998;273:10210–15.

    PubMed  CAS  Google Scholar 

  • Otto JC, Kim E, Young SG, Casey PJ. Cloning and characterization of a mammalian prenyl protein-specific protease. J Biol Chem. 1999;274:8379–82.

    PubMed  CAS  Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A. Structure of the guanine-nucleotide binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature. 1989;341:209–14.

    PubMed  CAS  Google Scholar 

  • Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Redefined structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990; 9:2351–9.

    PubMed  CAS  Google Scholar 

  • Palmero I, Pantoja C, Serrano M. p19(ARF) links the tumour suppressor p53 to Ras. Nature. 1998;395:125–6.

    PubMed  CAS  Google Scholar 

  • Peeper DS, Upton TM, Ladha MH, et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature. 1997;386:177–81.

    PubMed  CAS  Google Scholar 

  • Peli J, Schroter M, Rudaz C, et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J. 1999;18:1824–31.

    PubMed  CAS  Google Scholar 

  • Quaroni A, Paul ECA. Cytocentrin is a Ral-binding protein involved in the assembly and function of the mitotic apparatus. J Cell Sci. 1999;112:707–18.

    PubMed  CAS  Google Scholar 

  • Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990;62:81–8.

    PubMed  CAS  Google Scholar 

  • Reiss Y, Seabra MC, Armstrong SA, Slaughter CA, Goldstein JL, Brown, MS. Nonidentical subunits of p21H-ras farnesyltransferase. Peptide binding and farnesyl pyrophosphate carrier functions. J Biol Chem. 1991a;266:10672–7.

    PubMed  CAS  Google Scholar 

  • Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL. Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA. 1991b;88:732–6.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viviana P, Warne P, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370:527–32.

    Google Scholar 

  • Rodriguez-Viviana P, Warne P, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 1996;15:2442–51.

    Google Scholar 

  • Rodriguez-Viviana P, Warne PH, Khwaja A, et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell. 1997;89:457–67.

    Google Scholar 

  • Romano JD, Schmidt WK, Michaelis S. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum. Mol Biol Cell. 1998;9: 2231–47.

    PubMed  CAS  Google Scholar 

  • Roy S, Lane A, Yan J, McPherson R, Hancock JF. Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J Biol Chem. 1997;272:20139–45.

    PubMed  CAS  Google Scholar 

  • Saison-Behmoaras T, Tocqué B, Rey I, Chassignol M, Thuong NT, Hélène C. Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cell proliferation. EMBO J. 1991;10:1111–18.

    PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, et al. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277: 333–8.

    PubMed  CAS  Google Scholar 

  • Schlichting I, Almo SC, Rapp G, et al. Time-resolved X-ray crystallographic study of the conformational change in Haras p21 protein on GTP hydrolysis. Nature. 1990;345:309–15.

    PubMed  CAS  Google Scholar 

  • Schmidt M, Voss M, Thiel M, et al. Specific inhibition of phorbol ester-stimulated phospholipase D by Clostridium sordelii lethal toxiin and Clostridium difficile toxin B-1470 in HEK-293 cells. Restoration by Ral GTPases. J Biol Chem. 1998;273:7413–22.

    PubMed  CAS  Google Scholar 

  • Seabra MC. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 1998;10:167–72.

    PubMed  CAS  Google Scholar 

  • Seabra MC, Reiss Y, Casey PJ, Brown MS, Goldstein JL. Protein farnesyltransferase and geranylgeranyltransferase share a common a subunit. Cell. 1991;65:429–34.

    PubMed  CAS  Google Scholar 

  • Sebti S, Hamilton AD. Inhibitors of prenyl transferases. Curr Opin Oncol. 1997;9:557–61.

    PubMed  CAS  Google Scholar 

  • Serrano M, Gomez LE, DePinho RA, Beach D, Bar SD. Inhibition of Ras-induced proliferation and cellular transformation by p16INK4A. Science. 1995;267:249–52.

    PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell. 1997;88:593–602.

    PubMed  CAS  Google Scholar 

  • Shou C, Farnsworth CL, Neel BG, Feig L. A. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for ras p21. Nature. 1992;358:351–4.

    PubMed  CAS  Google Scholar 

  • Siddiqui AA, Garland JR, Dalton MB, Sinensky M. Evidence for a high affinity, saturable, prenylation-dependent p21(Ha-ras) binding site in plasma membranes. J Biol Chem. 1998;273:3712–17.

    PubMed  CAS  Google Scholar 

  • Sieburth DS, Sun Q, Han M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell. 1998;94:119–30.

    PubMed  CAS  Google Scholar 

  • Stokoe D, McCormick F. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J. 1997;16:2384–96.

    PubMed  CAS  Google Scholar 

  • Stokoe D, MacDonald SG, Cadwallader K, Symons M, Hancock J. Activation of Raf as a result of recruitment to the palsma membrane. Science. 1994;264:1463–76.

    PubMed  CAS  Google Scholar 

  • Storm SM, Cleveland JL, Rapp UR. Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene. 1990; 5:345–51.

    PubMed  CAS  Google Scholar 

  • Tabin C, Bradley SM, Bargmann CI, et al. Mechanism of activation of a human oncogene. Nature. 1982;300:143–9.

    PubMed  CAS  Google Scholar 

  • Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature. 1982;300:762–5.

    PubMed  CAS  Google Scholar 

  • Taylor SJ, Shalloway D. Cell cycle-dependent activation of Ras. Curr Biol. 1996;6:1621–7.

    PubMed  CAS  Google Scholar 

  • Tesmer JJG, Berman D, Gilman AG, Sprang SR. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell. 1997;89:251–61.

    PubMed  CAS  Google Scholar 

  • Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal. 1997;9:153–8.

    PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987;238:542–5.

    PubMed  CAS  Google Scholar 

  • Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 1996;15:810–16.

    PubMed  CAS  Google Scholar 

  • Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M. Complex formation between Ras and Raf and other protein kinases. Proc Natl Acad Sci USA. 1993;90:6213–17.

    PubMed  CAS  Google Scholar 

  • vanWeeren PC, deBruyn KMT, deVriesSmits AMM, vanLint J, Burgering BMT. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation — characterization of dominant-negative mutant of PKB. J Biol Chem. 1998;273:13150–6.

    CAS  Google Scholar 

  • vanWeering DHJ, deRooij J, Marte B, Downward J, Bos JL, Burgering BMT. Protein kinase B activation and lamellipodium formation are independent phosphoinositide 3-kinase-mediated events differentially regulated by endogenous Ras. Mol Cell Biol. 1998;18:1802–11.

    CAS  Google Scholar 

  • Vavvas D, Li X, Avruch J, Zhang XF. Identification of Nore1 as a potential Ras effector. J Biol Chem. 1998;273:5439–42.

    PubMed  CAS  Google Scholar 

  • Vogel US, Dixon RA, Schaber MD, et al. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature. 1988;355:90–3.

    Google Scholar 

  • Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998;273:19925–8.

    PubMed  CAS  Google Scholar 

  • Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993;74:205–14.

    PubMed  CAS  Google Scholar 

  • Wallace A, Koblan KS, Hamilton K, et al. Selection of potent inhibitors of farnesyl-protein transferase from a synthetic tetrapeptide combinatorial library. J Biol Chem. 1996;271: 31306–11.

    PubMed  CAS  Google Scholar 

  • Warne PH, Rodriguez-Viviana P, Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature. 1993;364:352–5.

    PubMed  CAS  Google Scholar 

  • White MA, Nicolette C, Minden A, et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell. 1995;80:533–41.

    PubMed  CAS  Google Scholar 

  • White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem. 1996; 271:16439–42.

    PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science. 1998;281:1671–4.

    PubMed  CAS  Google Scholar 

  • Willumsen BM, Norris K, Papageorge AG, Hubbert NL, Lowy DR. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 1984;3:2581–5.

    PubMed  CAS  Google Scholar 

  • Wittinghofer A, Nassar N. How Ras-related proteins talk to their effectors. Trends Biochem Sci. 1996;21:488–91.

    PubMed  CAS  Google Scholar 

  • Wolthuis RMF, Bauer B, van't Veer LJ, et al. RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein. Oncogene. 1996;13:353–62.

    PubMed  CAS  Google Scholar 

  • Wolthuis RMF, deRuiter ND, Cool RH, Bos JL. Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 1997;16:6748–61.

    PubMed  CAS  Google Scholar 

  • Wolthuis RMF, Zwartkruis F, Moen TC, Bos JL. Ras-dependent activation of the small GTPase Ral. Curr Biol. 1998;8:471–4.

    PubMed  CAS  Google Scholar 

  • Yamaguchi A, Urano T, Goi T, Feig LA. An eps homology (EH) domain protein that binds to the Ral-GTPase target, RalBP1. J Biol Chem. 1997;272:31230–4.

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Harada N, Kano K, et al. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol. 1997;139:785–95.

    PubMed  CAS  Google Scholar 

  • Zhang K, Papageorge AG, Martin P, et al. Heterogenous amino acids in ras and rap1A specifying sensitivity to GAP proteins. Science. 1991;254:1630–3.

    PubMed  CAS  Google Scholar 

  • Zhang XF, Settleman J, Kyriakis JM, et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature. 1993;364:308–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gunzburg, J. Proteins of the Ras pathway as novel potential anticancer therapeutic targets. Cell Biol Toxicol 15, 345–358 (1999). https://doi.org/10.1023/A:1007645631013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007645631013

Navigation