Skip to main content
Log in

Existence of Resonances for Metric Scattering in Even Dimensions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Suppose Δ g is the (negative) Laplace–Beltrami operator of a Riemannian metric g on \(\mathbb{R}\) n which is Euclidean outside some compact set. It is known that the resolvent R(λ)=(−Δ g −λ2)−1, as the operator from L 2 comp(\(\mathbb{R}\) n) to H 2 loc(\(\mathbb{R}\) n), has a meromorphic extension from the lower half plane to the complex plane or the logarithmic plane when n is odd or even, respectively. Resonances are defined to be the poles of this meromorphic extension. We prove that when n is 4 or 6, there always exist infinitely many resonances provided that g is not flat. When n is greater than 6 and even, we prove the same result under the condition that the metric is conformally Euclidean or is close to the Euclidean metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos, C., Guillot, J.-C. and Ralston, J. V.: La relation de Poisson pour l'équation des ondes dans un ouvert non borné, Comm. Partial Differential Equations 7 (1982), 905–958.

    Google Scholar 

  2. Christiansen, T.: Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), 203–211.

    Google Scholar 

  3. Hoörmander, L.: The Analysis of Linear Partial Differential Operators I–IV, Springer-Verlag, New York, 1983.

    Google Scholar 

  4. Intissar, A.: A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces ℝn;Comm. Partial Differential Equations 11(4) (1986), 367–396.

    Google Scholar 

  5. Kuwabara, R.: On the characterization of £at metrics by the spectrum, Comment.Math. Helv. 55 (1980), 427–444.

    Google Scholar 

  6. Melrose, R. B.: Scattering theory and the trace of the wave group, J. Funct. Anal. 45 (1982), 29–40.

    Google Scholar 

  7. Melrose, R. B.: Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303.

    Google Scholar 

  8. Melrose, R. B.: Polynomial Bounds on the Distribution of Poles in Scattering by an Obstacle, Journées ‘Équations aux Dérivées Partielles’, Saint-Jean-de-Monts, 1984.

  9. Patodi, V. K.: Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1973), 391–403.

    Google Scholar 

  10. Sá Barreto, A.: Lower bounds for the number of resonances in even-dimensional potential scattering, J. Funct. Anal. 169 (1999), 314–323.

    Google Scholar 

  11. Sá Barreto, A. and Tang, S. H.: Existence of resonances in metric scattering, Comp. Appl. Math. 17 (1998), 3–18

    Google Scholar 

  12. Sá Barreto, A. and Tang, S. H.: Existence of resonances in even dimensional potential scattering, To appear in Comm. Partial Differential Equations.

  13. Sá Barreto, A. and Zworski, M.: Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), 401–415.

    Google Scholar 

  14. Shenk, N. and Thoe, D.: Resonant states and poles of the scattering matrix for perturbations of-△, J. Math. Anal. Appl. 37 (1972), 467–491.

    Google Scholar 

  15. Sjoöstrand, J. and Zworski, M.: Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4(4) (1991), 729–769.

    Google Scholar 

  16. Sjoöstrand, J. and Zworski, M.: Lower bounds of the number of scattering poles II, J. Funct. Anal. 123 (1994), 336–367.

    Google Scholar 

  17. Stefanov, P.: Quasimodes and Resonances: sharp lower bounds, Duke Math. J. 99(1), (1999), 75–92.

    Google Scholar 

  18. Titchmarsh E. C.: The Theory of Functions, 2nd edn, Oxford University Press.

  19. Vodev, G.: Sharp polynomial bounds on the number of scattering poles for metric perturbation of the Laplacian in ℝn, Math. Ann. 291 (1991), 39–49.

    Google Scholar 

  20. Vodev, G.: Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1994), 1–17.

    Google Scholar 

  21. Zworski, M.: Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59(2) (1989), 311–323.

    Google Scholar 

  22. Zworski, M.: Counting scattering poles, In: M. Ikawa (ed.), Spectral and Scattering Theory, Marcel Dekker, New York, 1994.

    Google Scholar 

  23. Zworski, M.: Poisson formula for resonances, Séminaire E.D.P. 1996–1997, École Polytechnique, XIII-1–XIII-12.

  24. Zworski, M.: Poisson formula for resonances in even dimensions, Asian J. Math. 2(3) (1998), 615–624.

    Google Scholar 

  25. Zworski, M.: Resonances in physics and geometry, Notices Amer. Math. Soc. 46 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, SH. Existence of Resonances for Metric Scattering in Even Dimensions. Letters in Mathematical Physics 52, 211–223 (2000). https://doi.org/10.1023/A:1007640925180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007640925180

Navigation