Skip to main content
Log in

Conformal Scattering Theory for the Dirac Equation on Kerr Spacetime

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We establish the construction of a conformal scattering theory of the spin-1/2 massless Dirac equation on the Kerr spacetime by using the conformal geometric method and a pointwise logarithmic decay estimate for the massless Dirac field. In particular, our construction is valid on the exterior domains of Kerr black hole spacetimes in the full sub-extremal range \(|a|<M\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sachs, R.: Gravitational waves in general relativity VI, the outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309–338 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. Penrose, R.: Conformal approach to infinity. In: De Witt, B.S., De Witt, C.M. (eds.) Relativity, Groups and Topology, Les Houches 1963. Gordon and Breach, New-York (1964)

    Google Scholar 

  3. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Lond. A 284, 159–203 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mason, L.J., Nicolas, J.-P.: Peeling of Dirac and Maxwell fields on a Schwarzschild background. J. Geom. Phys. 62(4), 867–889 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pham, T.X.: Peeling for Dirac field on Kerr spacetime. J. Math. Phys. 61, 032501 (2020)

    Article  MathSciNet  Google Scholar 

  6. Andersson, L., Bäckdahl, T., Joudioux, J.: Hertz potentials and asymptotic properties of massless fields. Commun. Math. Phys. 331(2), 755–803 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Smoller, J., Xie, Ch.: Asymptotic behavior of massless Dirac waves in Schwarzschild geometry. Ann. Henri Poincaré 13, 943–989 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ma, S., Zhang, L.: Sharp decay estimates for massless Dirac fields on a Schwarzschild background. arXiv:2008.11429 (2021)

  9. Penrose, R.: Null hypersurface initial data for classical fields of arbitrary spin for general relativity. Gen. Relativ. Gravit. 12(3), 225–264 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. Joudioux, J.: Integral formula for the characteristic Cauchy problem on a curved background. J. Math. Pures Appl. (9) 95(2), 151–193 (2011)

    Article  MathSciNet  Google Scholar 

  11. Nicolas, J.-P.: Scattering of linear Dirac fields by a spherically symmetric Black-Hole. Ann. Inst. Henri Poincaré-Physique Théorique 62(2), 145–179 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Häfner, D., Nicolas, J.-P.: Scattering of massless Dirac fields by a Kerr black hole. Rev. Math. Phys. 16(1), 29–123 (2004)

    Article  MathSciNet  Google Scholar 

  13. Mokdad, M.: Conformal scattering and the Goursat problem for dirac fields in the interior of charged spherically symmetric black holes. arXiv:2101.04166 (2021)

  14. Jin, W.M.: Scattering of massive Dirac fields on the Schwarzschild black hole spacetime. Class. Quantum Grav. 15, 3163 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Batic, D.: Scattering for massive Dirac fields on the Kerr metric. J. Math. Phys. 48, 022502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Häfner, D., Nicolas, J.-P., Mokdad, M.: Scattering theory for Dirac fields inside a Reissner–Nordström-type black hole. arXiv:2007.16139 (2021)

  17. Mason, L.J., Nicolas, J.-P.: Conformal scattering and the Goursat problem. J. Hyperbolic Differ. Equ. 1(2), 197–233 (2004)

    Article  MathSciNet  Google Scholar 

  18. Joudioux, J.: Conformal scattering for a nonlinear wave equation. J. Hyperbolic Differ. Equ. 9(1), 1–65 (2012)

    Article  MathSciNet  Google Scholar 

  19. Joudioux, J.: Hörmander’s method for the characteristic Cauchy problem and conformal scattering for a nonlinear wave equation. Lett. Math. Phys. 110, 1391–1423 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Nicolas, J.-P.: On Lars Hörmander’s remark on the characteristic Cauchy problem. Ann. de l’Institut Fourier 56(3), 517–543 (2006)

    Article  MathSciNet  Google Scholar 

  21. Nicolas, J.-P.: Conformal scattering on the Schwarzschild metric. Ann. Inst. Fourier (Grenoble) 66(3), 1175–1216 (2016)

    Article  MathSciNet  Google Scholar 

  22. Pham, T.X.: Conformal scattering theory for the linearized gravity field on Schwarzschild spacetime. Ann. Glob. Anal. Geom. 60, 589–608 (2021)

    Article  MathSciNet  Google Scholar 

  23. Pham, T.X.: Conformal scattering theory for a tensorial Fackerell–Ipser equation on Schwarzschild spacetime. arXiv:2006.02888 (2020)

  24. Mokdad, M.: Conformal scattering of Maxwell fields on Reissner–Nordström–de Sitter black hole spacetimes. Ann. de l’institut Fourier 69(5), 2291–2329 (2019)

    Article  MathSciNet  Google Scholar 

  25. Pham, T.X.: Peeling and conformal scattering on the spacetimes of the general relativity. Phd’s thesis, Brest university (France) (4/2017). https://tel.archives-ouvertes.fr/tel-01630023/document

  26. Pham, T.X.: Cauchy and Goursat problems for the generalized spin-\(n/2\) zero rest-mass fields on Minkowski spacetime. arXiv:2106.04057 (2021)

  27. Moschidis, G.: Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes. Ann. PDE 2(5), 1–124 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Penrose, R., Rindler, W.: Spinors and Space-Time, Vol. I & II, Cambridge Monographs on Mathematical Physics. Cambridge University Press (1984, 1986)

  29. Nicolas, J.-P.: Dirac fields on asymptotically flat space-times. Dissertationes Mathematicae 408, p. 85 (2002)

  30. Nicolas, J.-P.: A non linear Klein-Gordon equation on Kerr metrics. J. de Mathématiques Pures et Appliqués 81(9), 885–914 (2002)

    Article  Google Scholar 

  31. Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime. arXiv:1903.03859 (2019)

  32. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay rates and probability estimates for massive Dirac particles in the Kerr–Newman black hole geometry. Commun. Math. Phys. 230(2), 201–244 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003)

    Article  MathSciNet  Google Scholar 

  34. Hörmander, L.: A remark on the characteristic Cauchy problem. J. Funct. AnaL. 93, 270–277 (1990)

    Article  MathSciNet  Google Scholar 

  35. Stiefel, E.: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv. 8, 305–353 (1936)

    Article  MathSciNet  Google Scholar 

  36. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182(3), 787–853 (2015)

    Article  MathSciNet  Google Scholar 

  37. Dafermos, M., Rodnianski, I., Rothman, Y.S.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(|a| < m\). Ann. Math. 183(3), 787–913 (2016)

    Article  MathSciNet  Google Scholar 

  38. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a| \ll m\). Ann. PDE 5(1), 1–118 (2019)

    Article  MathSciNet  Google Scholar 

  39. Ma, S.: Almost Price’s law in Schwarzschild and decay estimates in Kerr for Maxwell field. arXiv:2005.12492 (2020)

  40. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230, 995–1028 (2012)

    Article  MathSciNet  Google Scholar 

  41. Metcalfe, J., Tataru, D., Tohaneanu, M.: Pointwise decay for the Maxwell field on black hole space-times. Adv. Math. 316, 53–93 (2017)

    Article  MathSciNet  Google Scholar 

  42. Rothman, Y. S.-, Costa, R. T. D.: Boundedness and decay for the Teukolsky equation on Kerr in the full subextremal range \(|a|<M\): frequency space analysis, preprint (2020). arXiv:2007.07211

  43. Moschidis, G.: The \(r^p\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2(6), 1–194 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his or her careful reading of the manuscript, bringing the reference [27] into our attention. His/her corrections, suggestions and comments help to improve the paper. The author is also grateful to Siyuan Ma for the explanation of the Price’s law of the Dirac field on Kerr spacetimes.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Goursat Problem for the Spin Wave Equations on Kerr Spacetime

In this part, we extend the results of Hörmander [34] for the spin-1/2 wave equations. The results of Hörmander were extended for the scalar wave equation by Nicolas [20] with the following minor modifications: the \({\mathcal {C}}^1\)-metric, the continuous coefficients of the derivatives of the first-order and the terms of order zero have locally \(L^\infty \)-coefficients. We refer [13, 19, 21,22,23,24, 26] for the applications of the generalized results of Hörmander to solve the Goursat problem for the massless spin, tensorial equations, linear and semilinear wave equations. Here we will show how the Goursat problem is valid for the spin wave equations in the future \({\mathcal {I}}^+({\mathcal {S}})\) of \({\mathcal {S}}\) in \(\bar{{\mathcal {B}}}_I\) (recall that \({\mathcal {S}}\) is the spacelike hypersurface in \(\bar{{\mathcal {B}}}_I\) such that it passes \({{\mathscr {I}}}^+\) strictly in the past of the support data).

Let P be a point in \(\bar{{\mathcal {B}}}_I\); we cut off \({\mathcal {I}}^+({\mathcal {S}})\) by the future neighborhood \({\mathcal {V}}\) of P such that \({\mathcal {V}}\) does not intersect with the support of Goursat data and get \({\mathfrak {B}}={\mathcal {I}}^+({\mathcal {S}})/{\mathcal {V}}\). We extend \(({\mathfrak {B}},{\widetilde{g}})\) onto a cylindrical globally hyperbolic spacetime \(({\mathfrak {M}}={{\mathbb {R}}}_t\times S^3, {\mathfrak {g}})\), where \({\mathfrak {g}}|_{{\mathfrak {B}}} = \tilde{g}|_{\bar{{\mathcal {B}}}_I}\) and the part of null conformal boundary \({\mathfrak {H}}^+\cup {{\mathscr {I}}}^+\) inside \({\mathcal {I}}^+({\mathcal {S}})/{\mathcal {V}}\) is extended as a null hypersurface \({\mathcal {C}}\) that is the graph of a Lipschitz function over \(S^3\) and the data by zero on the rest of the extended hypersurface.

We consider the Goursat problem of the following spin wave equation in the spacetime \(({\mathfrak {M}} = {{\mathbb {R}}}_t\times S^3, {\mathfrak {g}})\):

$$\begin{aligned} {\left\{ \begin{array}{ll} {\widehat{\Box }}{\widetilde{\phi }}_Z &{}= 0,\\ {\widetilde{\phi }}_A|_{{\mathcal {C}}} &{}= {\widetilde{\psi }}_A|_{{\mathcal {C}}} \in {\mathcal {C}}^\infty _0({\mathcal {C}}, {{{\mathbb {S}}}}_A),\\ \nabla _{{\mathfrak {g}}}^{AA'}{\widetilde{\phi }}_A|_{{\mathcal {C}}} &{} = {\widetilde{\zeta }}^{A'}|_{{\mathcal {C}}} \in {\mathcal {C}}^\infty _0({\mathcal {C}}, {{{\mathbb {S}}}}^{A'}), \end{array}\right. } \end{aligned}$$
(47)

where the operator \({\widehat{\Box }}\) defined by (16) acts on the full spin fields. Note that we can replace \({\widehat{\Box }}\) by the two other spin wave operators \({\check{\Box }}\) and \(\breve{\Box }\) defined in Equations (17) and (18), respectively.

Following [35] the spacetime \(({\mathfrak {M}} = {{\mathbb {R}}}_t\times S^3, {\mathfrak {g}})\) is parallelizable, i.e. it admits a continuous global frame in the sense that the tangent space at each point has a basis. Therefore, we can choose a global spin-frame \(\left\{ o,\iota \right\} \) for \({\mathfrak {M}}\) such that in this spin-frame the Newman–Penrose tetrad is \(\mathcal {C}^{\infty }\). Projecting (47) on \(\left\{ o,\iota \right\} \) (see the end of “Appendix 6.1” for the projection of the covariant derivative equation \(\nabla _{{\mathfrak {g}}}^{AA'}\phi _A|_{{\mathcal {C}}}\)) we get the scalar matrix form as follows

$$\begin{aligned} {\left\{ \begin{array}{ll} P{\widetilde{\Phi }} + L_1 {\widetilde{\Phi }} &{}= 0,\\ ({\widetilde{\Phi }}, \,\partial _t{\widetilde{\Phi }})|_{t=0} &{}= ({\widetilde{\Psi }}, \, \partial _t{\widetilde{\Psi }}) \in {\mathcal {C}}^\infty _0({\mathcal {C}})\times {\mathcal {C}}^\infty _0({\mathcal {C}}), \end{array}\right. } \end{aligned}$$
(48)

where

$$\begin{aligned} P= \left( \begin{matrix} \Box &{}&{}0\\ 0&{}&{}\Box \end{matrix} \right) \end{aligned}$$

is the \(2\times 2\)-matrix diagram,

$$\begin{aligned} {\widetilde{\Phi }} = \left( \begin{matrix} {\widetilde{\phi }}_0\\ {\widetilde{\phi }}_1 \end{matrix} \right) , \, {\widetilde{\Psi }} = \left( \begin{matrix} {\widetilde{\psi }}_0\\ {\widetilde{\psi }}_1 \end{matrix} \right) \end{aligned}$$

are the components of \({\widetilde{\phi }}_{A}\) and \({\widetilde{\psi }}^{A'}\), respectively, on the spin-frames \(\left\{ o_A,\iota _A \right\} \) and \(\left\{ o^{A'},\iota ^{A'} \right\} \), respectively, and

$$\begin{aligned} L_1 = \left( \begin{matrix} L_1^{00}&{}&{}L_1^{01}\\[3pt] L_1^{10}&{}&{} L_1^{11} \end{matrix} \right) \end{aligned}$$

is the \(2\times 2\)-matrix where the components are the operators that have the \({\mathcal {C}}^\infty \)-coefficients

$$\begin{aligned} L_1^{ij} = b_0^{ij}\partial _t + b_\alpha ^{ij}\partial _\alpha + c^{ij}. \end{aligned}$$

We have that \({\mathfrak {g}}\) is a \({\mathcal {C}}^1\)-metric, the terms consisting of the derivatives in first order in \(L_1\) have continuous coefficients and the terms without derivatives have locally \(L^\infty \)-coefficients. Then, the Goursat problem for the \(2\times 2\)-matrix wave equation (48) is well posed in \(({\mathfrak {M}}={{\mathbb {R}}}_t\times S^3,{\mathfrak {g}})\) by applying the results in [20, Theorem 3 and Theorem 4].

Theorem 5.1

For the initial data \(({\widetilde{\psi }}_i,\partial _t{\widetilde{\psi }}_i) \in {{{\mathcal {C}}}}_0^{\infty }({\mathcal {C}})\times {{\mathcal {C}}}_0^\infty ({\mathcal {C}}) \) for all \(i=0,1\), the \(2\times 2\)-matrix equation (48); hence, the spin wave equation (47) has a unique solution \({\widetilde{\Phi }} = ({\widetilde{\phi }}_0,{\widetilde{\phi }}_1)\) satisfying

$$\begin{aligned} {\widetilde{\phi }}_i \in {{\mathcal {C}}}({{\mathbb {R}}};H^1(S^3))\cap {\mathcal {C}}^1({{\mathbb {R}}};L^2(S^3)) \; \text{ for } \text{ all } \; i = 0,1. \end{aligned}$$

Using the finite propagation speed the solution \({\widetilde{\Phi }}\) vanishes in \({\mathcal {I}}^+({\mathcal {S}})/{\mathfrak {B}}\) by local uniqueness and causality. Therefore, the Goursat problem has a unique smooth solution in the future of \({\mathcal {S}}\), that is, the restriction of \({\widetilde{\Phi }}\) to \({\mathfrak {B}}\).

1.2 A Pointwise Logarithmic Decay Estimate for Dirac Field on Slow Kerr Spacetime

There are some methods to prove the pointwise decay of the field equations such as scalar wave, Dirac, Maxwell, linearized gravity and spin Teukolsky equations on Kerr spacetime (see [31, 36,37,38,39,40,41,42]). The methods are based on the transformation equations to the wave (or spin wave) equations with potentials which decay sufficiently to establish the decay of solutions. In this section, we will apply and develop the previous results obtained by Moschidis [27] to establish a pointwise logarithmic decay estimate for the massless Dirac field’s spin components on slow Kerr spacetimes in the full sub-extremal range \(|a|<M\).

First, by using the curvature spinors and spinor form of commutators as in Sects. 2.3 and 2.4 we can show that the origin Dirac field \(\phi _A\) satisfies the following spin wave equation

$$\begin{aligned} 2\nabla _{ZA'}\nabla ^{AA'}\phi _A = {\check{\Box }} \phi _Z + X_{ZA}{^{NA}}\phi _N = 0, \end{aligned}$$
(49)

where \({\check{\Box }} \phi _Z = \varepsilon ^{AM}\nabla _{A'[Z}\nabla {_{M]}}{^{A'}}\phi _A\) and \(X_{ZA}{^{NA}}\phi _N = \varepsilon ^{AM}\nabla _{A'(Z}\nabla {_{M)}}{^{A'}}\phi _A\).

We note that the components of the curvature spinor \(X_{ZA}{^{NA}}\) can be calculated from the components of the Riemann curvature \({R_{ab}}^{cd}\) given in Appendix 6.3. We can verify that the components of \({R_{ab}}^{cd}\) are equivalent to \(r^{-3}\). Therefore, the coefficients of \(X_{ZA}{^{NA}}\) are also equivalent to \(r^{-3}\). On the other hand, by using the formulas (54) and (55) we can transform the spin wave operator \({\check{\Box }} \phi _Z\) (where \({\check{\Box }}\) acts on the full spinor field) to the scalar wave operator \(\Box _g\phi _Z\) (where \(\Box _g\) acts on the functional coefficients). This yields

$$\begin{aligned} {\check{\Box }} \phi _Z = \Box _g\phi _Z + \left\langle r\right\rangle ^{-2}\partial _\alpha \phi _Z + \left\langle r\right\rangle ^{-3}\phi _Z, \end{aligned}$$

where we denote the functions equivalent to r by \(\left\langle r\right\rangle \). The term \(\left\langle r\right\rangle ^{-2}\partial _\alpha \phi _Z + \left\langle r\right\rangle ^{-3}\phi _Z\) arises from the asymptotic part of Kerr metric (1) (which contains the angular momentum a and the mass M) to Minkowski metric.

Therefore, the spin wave equation (49) can be re-written by the following equivalence form

$$\begin{aligned} \Box _g\phi _Z = \left\langle r\right\rangle ^{-2}\partial _\alpha \phi _Z + \left\langle r\right\rangle ^{-3}\phi _Z. \end{aligned}$$

Projecting the above equation on the global spin-frame \(\left\{ o_A,\iota _A \right\} \) on Block \({\mathcal {B}}_I\), we get the scalar matrix form as follows

$$\begin{aligned} P\Phi = \left\langle r\right\rangle ^{-2}\partial _\alpha \Phi + \left\langle r\right\rangle ^{-3}\Phi , \end{aligned}$$
(50)

where

$$\begin{aligned} P= \left( \begin{matrix} \Box &{}&{}0\\ 0&{}&{}\Box \end{matrix} \right) \end{aligned}$$

is the \(2\times 2\)-matrix scalar wave operator and \(\Phi = \left( \begin{matrix} \phi _0\\ \phi _1 \end{matrix} \right) \) is the components of \(\phi _{A}\) on the spin-frames \(\left\{ o_A,\iota _A \right\} \). Therefore, Eq. (50) is equivalent to

$$\begin{aligned} \Box _g\phi _1 = \left\langle r\right\rangle ^{-2}\partial _\alpha \phi _1 + \left\langle r\right\rangle ^{-3}\phi _1 \end{aligned}$$
(51)

and

$$\begin{aligned} \Box _g\phi _0 = \left\langle r\right\rangle ^{-2}\partial _\alpha \phi _0 + \left\langle r\right\rangle ^{-3}\phi _0. \end{aligned}$$
(52)

Remark 6

Note that the Kerr metric in the full sub-extremal range \(|a|<M\) satisfies the generalized conditions of asymptotic flat spacetimes in Sections 3.1, 7.1 and 8.1 in [43] and in Section 1.3 in [27]. Moreover, the coefficients in \(L^1\) operator (which consists of the derivative terms of order less than or equal to one) in the right-hand sides of (51) and (52) decay sufficiently as \(r\rightarrow \infty \) (for example, we can see that the expressions of Eqs. (51) and (52) in the coordinates \((t{^*},\, {{^*}t},\, \omega )\) have the same forms of the scalar wave equations (3.14) and (3.15) in [43]). Therefore, we can apply the previous results of the scalar wave equation \(\Box _g\phi = 0\) obtained in [27, 43] and also [37] to Eqs. (51) and (52) on Kerr spacetimes in the full sub-extremal range \(|a|<M\).

First, we apply the previous results (see [37, Theorems 3.1, 3.2 and Proposition 4.5.2]) to obtain the boundedness and integrated local energy estimates for the solutions of Eqs. (51) and (52) at the original and higher order in sub-extremal Kerr spacetime. Moreover, the \(r^p\)-weighted energy method can be also applied to Eqs. (51) and (52) as in Theorems 1.1 and 1.2 in [43]. Therefore, we can derive the polynomial decay estimates for the solutions of Eqs. (51) and (52) in the sub-extremal Kerr spacetime as in Corollary 3.1 in [37] or Theorems 1.3 and 1.4 in [43]. However, since we have discussed in Sect. 3.2 (then proved in Theorem 2) that we need not an improved decay to construct a conformal scattering theory for the massless Dirac field, we will provide here a weak decay that is sufficient for our construction.

In particular, we use the results in [27] to obtain a pointwise logarithmic decay estimate for the solutions of Eqs. (51) and (52). The foliation \(\left\{ {\mathcal {H}}_T \right\} _T\) (given by (24)) satisfies the class of hyperboloidal hypersurfaces \(\left\{ {\mathcal {S}}_t\right\} _{t}\) terminating at \({{\mathscr {I}}}^+\) in [27] (in detail, see [27, Equation (2.7)]) with the foliated time function \(t = T + h(r) - r_*\). Applying Corollary 2.2 in [27], we have the logarithmic decay of the energy through \({\mathcal {H}}_T\) as follows: for any \(m\in {{\mathbb {N}}}\), there exists a positive constant \(C_m>0\) such that every smooth solutions of Eqs. (51) and (52) satisfy the following estimates

$$\begin{aligned} \int _{{\mathcal {H}}_T} J^N_{\mu }(\phi _i)n^\mu _{{\mathcal {H}}_T} \le \frac{C_m}{[\log (2+T+h(r)-r_*)]^{2m}}\left( \int _{\Sigma _0} r^{\delta _0}J^N_\mu (\phi _i)n^\mu + \sum _{j=0}^m\int _{\Sigma _0}J^N_\mu (T^j\phi _i)n^\mu \right) , \end{aligned}$$

where \(i\in \left\{ 0,\, 1\right\} ,\, 0<\delta _0 \le 1\). Here, \(T=\partial _t\) is the smoothing Killing vector field, N is red-shift vector field (see [27, Subsection 2.1.2]) and \(J^N_\mu \) denotes the current of Eqs. (51) and (52) (see [27, Section 3.8]), \(n^\mu _{{\mathcal {H}}_T}\) (resp. \(n^\mu \)) being the future directed normal to \({\mathcal {H}}_T\) (resp. \(\Sigma _0\)).

The above inequalities hold also for the higher order local energies of \(\phi _i\) since the boundedness and integrated local energy estimates are valid for the high order energies of \(\phi _i\). Using this fact, standard elliptic estimates and the Sobolev embedding theorem, we can derive a pointwise logarithmic decay estimate for \(\phi _i\) as follows (see also Equation (2.14) in [27]):

$$\begin{aligned} \sup _{{\mathcal {H}}_T}|\phi _i|^2\le & {} \frac{C_m}{[\log (2+T+h(r)-r_*)]^{2m}} \sum _{k=0}^1\left( \int _{\Sigma _0} r^{\delta _0}J^N_\mu (N^k\phi _i)n^\mu \right. \\&\left. \quad +\, \sum _{j=0}^m\int _{\Sigma _0}J^N_\mu (N^kT^j\phi _i)n^\mu \right) , \end{aligned}$$

where \(i=0,\, 1\).

Appendix B

1.1 Detailed Calculations for the Goursat Problem

The expression of the spinor field \(\Xi ^{A'}\) on the spin-frame \(\left\{ {\widetilde{o}},\,{\widetilde{\iota }} \right\} \) is as follows

$$\begin{aligned} \Xi ^{A'}= & {} \Xi ^{1'} {\widetilde{o}}^{A'} - \Xi ^{0'} {\widetilde{\iota }}^{A'}. \end{aligned}$$

The covariant derivative \({\widetilde{\nabla }}_{ZA'}\) acts on the full spinor field can be decomposed as

$$\begin{aligned} {\widetilde{\nabla }}_a \Xi = ({\widetilde{D}}\Xi ){\widetilde{n}}_a + ({\widetilde{D}}'\Xi ){\widetilde{l}}_a - ({\widetilde{\delta }}\Xi )\bar{{{{\widetilde{m}}}}}_a - ({\widetilde{\delta }}'\Xi ){\widetilde{m}}_a. \end{aligned}$$

We recall that the twelve values of the rescaled spin coefficients are

$$\begin{aligned} {\widetilde{\kappa }}= & {} {\widetilde{\sigma }}={\widetilde{\lambda }}={\widetilde{\nu }}=0,\\ {\widetilde{\tau }}= & {} -\frac{ia\sin \theta r}{\sqrt{2} \rho ^2} , \, {\widetilde{\pi }}=\frac{ia\sin \theta r}{\sqrt{2} {{\bar{p}}}^2}, \, {\widetilde{\rho }} = -\frac{iar\cos \theta }{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}, \, {\widetilde{\mu }} = \left( R-\frac{1}{{{\bar{p}}}}\right) \sqrt{\frac{\Delta }{2\rho ^2}},\\ {\widetilde{\varepsilon }}= & {} \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}},\, {\widetilde{\alpha }} = \frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) , \\ {\widetilde{\beta }}= & {} \frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) , \\ {\widetilde{\gamma }}= & {} \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}. \end{aligned}$$

The covariant derivative acts on the spin-frame \(\left\{ {\widetilde{o}}_A,\, {\widetilde{\iota }}_A \right\} \) as (see Equation (4.5.26) in [28, Vol. 1]):

$$\begin{aligned}&{\widetilde{D}}{\widetilde{o}}_A = {\widetilde{\varepsilon }} {\widetilde{o}}_A - {\widetilde{\kappa }}{\widetilde{\iota }}_A = \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}{\widetilde{o}}_A ,\\&{\widetilde{D}}{\widetilde{\iota }}_A = -{\widetilde{\varepsilon }}{\widetilde{\iota }}_A + {\widetilde{\pi }}{\widetilde{o}}_A = - \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}{\widetilde{\iota }}_A + \frac{ia\sin \theta r}{\sqrt{2} {{\bar{p}}}^2} {\widetilde{o}}_A,\\&{\widetilde{\delta }}'{\widetilde{o}}_A = {\widetilde{\alpha }} {\widetilde{o}}_A - {\widetilde{\rho }}{\widetilde{\iota }}_A = \frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{o}}_A + \frac{iar\cos \theta }{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}{\widetilde{\iota }}_A,\\&{\widetilde{\delta }}'{\widetilde{\iota }}_A = -{\widetilde{\alpha }}{\widetilde{\iota }}_A + {\widetilde{\lambda }}{\widetilde{o}}_A = -\frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{\iota }}_A,\\&{\widetilde{\delta }}{\widetilde{o}}_A = {\widetilde{\beta }} {\widetilde{o}}_A - {\widetilde{\sigma }}{\widetilde{\iota }}_A = \frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{o}}_A,\\&{\widetilde{\delta }}{\widetilde{\iota }}_A = -{\widetilde{\beta }}{\widetilde{\iota }}_A + {\widetilde{\mu }}\tilde{o}_A = -\frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{\iota }}_A + \left( R-\frac{1}{{{\bar{p}}}}\right) \sqrt{\frac{\Delta }{2\rho ^2}}{\widetilde{\iota }}_A,\\&{\widetilde{D}}'{\widetilde{o}}_A {=} {\widetilde{\gamma }} {\widetilde{o}}_A {-} {\widetilde{\tau }}{\widetilde{\iota }}_A {=} \left( \frac{Mr^2 {-} a^2(r\sin ^2\theta {+} M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} {-} \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}\right) {\widetilde{o}}_A -\frac{ia\sin \theta r}{\sqrt{2} \rho ^2}{\widetilde{\iota }}_A, \\&{\widetilde{D}}'{\widetilde{\iota }}_A = -{\widetilde{\gamma }}{\widetilde{\iota }}_A + {\widetilde{\nu }}{\widetilde{o}}_A = -\left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}\right) {\widetilde{\iota }}_A. \end{aligned}$$

Similarly on the dual conjugation spin-frame \(\left\{ {\widetilde{o}}^{A'}, \, {\widetilde{\iota }}^{A'} \right\} \) we have

$$\begin{aligned}&{\widetilde{D}}{\widetilde{o}}^{A'} = \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}{\widetilde{o}}^{A'} ,\\&{\widetilde{D}}{\widetilde{\iota }}^{A'} = - \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}{\widetilde{\iota }}^{A'} + \frac{ia\sin \theta r}{\sqrt{2} {{\bar{p}}}^2} {\widetilde{o}}^{A'},\\&{\widetilde{\delta }}'{\widetilde{o}}^{A'} = \frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{o}}^{A'} + \frac{iar\cos \theta }{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}{\widetilde{\iota }}^{A'},\\&{\widetilde{\delta }}'{\widetilde{\iota }}^{A'} = -\frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{\iota }}^{A'},\\&{\widetilde{\delta }}{\widetilde{o}}^{A'} = \frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{o}}^{A'},\\&{\widetilde{\delta }}{\widetilde{\iota }}^{A'} = -\frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) {\widetilde{\iota }}^{A'} + \left( R-\frac{1}{{{\bar{p}}}}\right) \sqrt{\frac{\Delta }{2\rho ^2}}{\widetilde{\iota }}^{A'},\\&{\widetilde{D}}'{\widetilde{o}}^{A'} = \left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}\right) {\widetilde{o}}^{A'} -\frac{ia\sin \theta r}{\sqrt{2} \rho ^2}{\widetilde{\iota }}^{A'}, \\&{\widetilde{D}}'{\widetilde{\iota }}^{A'} = -\left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}\right) {\widetilde{\iota }}^{A'}. \end{aligned}$$

We have the detailed expression of \({\widetilde{\nabla }}_{ZA'}\Xi ^{A'}\) given by

$$\begin{aligned}&{\widetilde{\nabla }}_{ZA'}\Xi ^{A'} = ({\widetilde{D}}\Xi ^{A'}){\widetilde{n}}_a + ({\widetilde{D}}'\Xi ^{A'}){\widetilde{l}}_a - ({\widetilde{\delta }}\Xi ^{A'})\bar{{{{\widetilde{m}}}}}_a - ({\widetilde{\delta }}'\Xi ^{A'}){\widetilde{m}}_a \nonumber \\&\quad = {\widetilde{D}} \left( \Xi ^{1'}{\widetilde{o}}^{A'} \right) {\widetilde{\iota }}_A{\widetilde{\iota }}_{A'} - {\widetilde{D}}' \left( \Xi ^{0'}{\widetilde{\iota }}^{A'} \right) {\widetilde{o}}_A {\widetilde{o}}_{A'} + {\widetilde{\delta }} \left( \Xi ^{0'} {\widetilde{\iota }}^{A'} \right) {\widetilde{\iota }}_{A} {\widetilde{o}}_{A'} - {\widetilde{\delta }}' \left( \Xi ^{1'}{\widetilde{o}}^{A'} \right) {\widetilde{o}}_A {\widetilde{\iota }}_{A'} \nonumber \\&\quad = \left\{ \!\left( \!-{\widetilde{D}} {-} \frac{Mr^4 {-} a^2r^2(r\sin ^2\theta {+} M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} \!\right) \Xi ^{1'} {+}\!\! \left( \!{\widetilde{\delta }} {-} \frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}{+}\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\!\right) \! \right) \Xi ^{0'}\!\right\} {\widetilde{\iota }}_A \nonumber \\&\qquad +\, \left\{ \left( -{\widetilde{D}}' + \left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \left( \frac{ia\cos \theta }{\rho ^2}+R\right) \sqrt{\frac{\Delta }{2\rho ^2}}\right) \right) \Xi ^{0'}\right. \nonumber \\&\left. \qquad +\, \left( {\widetilde{\delta }}' + \frac{r}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \right) \Xi ^{1'} \right\} {\widetilde{o}}_A. \end{aligned}$$
(53)

Taking the restriction of the system (53) on \({{\mathscr {I}}}^+\) with noting that \(\Xi ^{1'}|_{{{\mathscr {I}}}^+} =0\), we get only the restriction of the second equation

$$\begin{aligned} -\lim _{r\rightarrow \infty }{\widetilde{D}}'\Xi ^{0'}|_{{{\mathscr {I}}}^+} = -\lim _{r\rightarrow \infty }\sqrt{\frac{2(a^2+r^2)}{\Delta }} \partial _{{^*}t} \Xi ^{0'}|_{{{\mathscr {I}}}^+} = \sqrt{2}\partial _{{^*}t} \Xi ^{0'}|_{{{\mathscr {I}}}^+}= 0. \end{aligned}$$

Integrating these equations along \({{\mathscr {I}}}^+\), we get \(\Xi ^{0'}|_{{{\mathscr {I}}}^+} = \; constant\). This leads to a fact that the Cauchy problem with the initial condition \(\Xi ^{0'}|_{{{{\mathcal {V}}}}(P)\cap {{\mathscr {I}}}^+} = 0\) has a unique solution and it equals to zero.

By the same way, we can obtain the restriction of the rescaled equation on \({\mathfrak {H}}^+\) by considering the rescaled equation \({\widehat{\nabla }}_{ZA'}\Xi ^{A'}=0\) on the rescaled Kerr–star coordinates \((t{^*},R,\theta ,\varphi {^*})\). By the same calculations, we get the restriction on \({\mathfrak {H}}^+\) of \({\widehat{\nabla }}_{ZA'}\Xi ^{A'}=0\) which is the restriction of the first equation of (53) on \({\mathfrak {H}}^+\) with \(\widetilde{.}\) replaced by \(\widehat{.}\):

$$\begin{aligned}&\left( -{\widehat{D}} - \frac{Mr^4 - a^2r^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} \right) \Xi ^{1'} \\&\quad +\, \left( {\widehat{\delta }} - \frac{r}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \right) \Xi ^{0'} = 0. \end{aligned}$$

Multiplying the above equation by \(\dfrac{\sqrt{\Delta \rho ^2}}{\sqrt{2}(r_+^2+a^2)}\) and taking the restriction of the equation obtained on \({\mathfrak {H}}^+\) with noting that \(\Xi ^{0'}|_{{\mathfrak {H}}^+} =0\), we get

$$\begin{aligned} \left( -\partial _{t{^*}} - \frac{a}{r_+^2 + a^2}\partial _{\varphi {^*}} - \frac{Mr_+^4 - a^2r_+^2(r_+\sin ^2\theta + M\cos ^2\theta )}{4(r_+^2+a^2)(r_+^2+ a^2\cos ^2\theta )} \right) \Xi ^{1'}|_{{\mathfrak {H}}^+} = 0. \end{aligned}$$

Using \(\Delta |_{{\mathfrak {H}}^+} = r_+^2 - 2Mr_+ + a^2 = 0\) we obtain that

$$\begin{aligned} \left( -\partial _{t{^*}} - \frac{a}{2Mr_+}\partial _{\varphi {^*}} - \frac{r_+^2-Mr_+}{8M} \right) \Xi ^{1'}|_{{\mathfrak {H}}^+} = 0. \end{aligned}$$

Putting \(v= t{^*}+ \frac{a}{2Mr_+}\varphi {^*}\), we have \(\partial _v= \partial _{t{^*}} + \frac{a}{2Mr_+}\partial _{\varphi {^*}}\) and

$$\begin{aligned} \partial _v\Xi ^{1'}|_{{\mathfrak {H}}^+} + \frac{r_+^2-Mr_+}{8M} \Xi ^{1'}|_{{\mathfrak {H}}^+} = 0. \end{aligned}$$

By solving this equation, we get

$$\begin{aligned} \Xi ^{1'}|_{{\mathfrak {H}}^+} = Ce^{-\frac{r_+^2 - Mr_+}{8M}v}. \end{aligned}$$

From the initial condition \(\Xi ^{1'}|_{{\mathcal {V}}(P)\cap {\mathfrak {H}}^+} = 0\), we find that \(C=0\) and \(\Xi ^{1'}|_{{\mathfrak {H}}^+}=0\). Therefore, we conclude that if the support of \(\Xi ^{1'}|_{{\mathfrak {H}}^+}\) is compact and far away from \(i^+\), then the rescaled equation \({\widehat{\nabla }}_{ZA'}\Xi ^{A'}=0\) leads to \(\Xi ^{1'}|_{{\mathfrak {H}}^+} = 0\).

1.2 Spin Coefficients and Derivations of the Origin Spin-Frame

Using the Newman–Penrose tetrad normalization (6), the spin coefficients are calculated (see [12]):

$$\begin{aligned} \kappa= & {} {\tilde{\sigma }} = \lambda = \nu = 0,\\ \tau= & {} -\frac{ia\sin \theta }{\sqrt{2} \rho ^2} , \, \pi = \frac{ia\sin \theta }{\sqrt{2} {{\bar{p}}}^2}, \, {\tilde{\rho }} = \mu = -\frac{1}{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}, \, \varepsilon = \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}},\\ \alpha= & {} \frac{1}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{\bar{p}}}-\frac{\cot \theta }{2} + \frac{a^2\sin \theta \cos \theta }{2\rho ^2} \right) , \, \beta = \frac{1}{\sqrt{2}p} \left( \frac{\cot \theta }{2} +\frac{a^2\sin \theta \cos \theta }{2\rho ^2} \right) ,\\ \gamma= & {} \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \frac{ia\cos \theta }{\rho ^2}\sqrt{\frac{\Delta }{2\rho ^2}}; \end{aligned}$$

here we use \({\tilde{\sigma }}\) and \({\tilde{\rho }}\) to avoid the confusion with the parameters \(\sigma \) and \(\rho \) in the Kerr metric.

The covariant derivative acts on the spin-frame \(\left\{ o_A,\, \iota _A \right\} \) as (see Equation (4.5.26) in [28, Vol. 1]):

$$\begin{aligned} \begin{aligned} Do_A&= \varepsilon o_A - \kappa \iota _A = \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}o_A,\\ D\iota _A&= -\varepsilon \iota _A + \pi o_A = -\frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}\iota _A + \frac{ia\sin \theta }{\sqrt{2} {{\bar{p}}}^2} o_A,\\ \delta 'o_A&= \alpha o_A - {\tilde{\rho }}\iota _A = \frac{1}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) o_A + \frac{1}{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}\iota _A,\\ \delta '\iota _A&= -\alpha \iota _A + \lambda o_A = -\frac{1}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \iota _A,\\ \delta o_A&= \beta o_A - {\tilde{\sigma }}\iota _A = \frac{1}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) o_A,\\ \delta \iota _A&= -\beta \iota _A + \mu o_A = -\frac{1}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \iota _A - \frac{1}{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}\iota _A,\\ D'o_A&= \gamma o_A - \tau \iota _A = \left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \frac{ia\cos \theta }{\rho ^2}\sqrt{\frac{\Delta }{2\rho ^2}}\right) o_A + \frac{ia\sin \theta }{\sqrt{2} \rho ^2}\iota _A, \\ D'\iota _A&= -\gamma \iota _A + \nu o_A = -\left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \frac{ia\cos \theta }{\rho ^2}\sqrt{\frac{\Delta }{2\rho ^2}}\right) \iota _A. \end{aligned} \end{aligned}$$
(54)

Similarly on the dual conjugation spin-frame \(\left\{ o^{A'}, \, \iota ^{A'} \right\} \) we have

$$\begin{aligned} \begin{aligned} Do^{A'}&= \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} o^{A'} ,\\ D\iota ^{A'}&= -\frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}}\iota ^{A'} + \frac{ia\sin \theta }{\sqrt{2} {{\bar{p}}}^2} o^{A'},\\ \delta 'o^{A'}&= \frac{1}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) o^{A'} + \frac{1}{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}\iota ^{A'},\\ \delta '\iota ^{A'}&= -\frac{1}{\sqrt{2}{\bar{p}}}\left( \frac{ia\sin \theta }{{{\bar{p}}}}-\frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \iota ^{A'},\\ \delta o^{A'}&= \frac{1}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) o^{A'},\\ \delta \iota ^{A'}&= -\frac{1}{\sqrt{2} p}\left( \frac{\cot \theta }{2}+\frac{a^2\sin \theta \cos \theta }{2\rho ^2}\right) \iota ^{A'} + - \frac{1}{{{\bar{p}}}}\sqrt{\frac{\Delta }{2\rho ^2}}\iota ^{A'},\\ D'o^{A'}&= \left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \frac{ia\cos \theta }{\rho ^2}\sqrt{\frac{\Delta }{2\rho ^2}}\right) o^{A'} + \frac{ia\sin \theta }{\sqrt{2} \rho ^2}\iota ^{A'}, \\ D'\iota ^{A'}&= -\left( \frac{Mr^2 - a^2(r\sin ^2\theta + M\cos ^2\theta )}{2\rho ^2\sqrt{2\Delta \rho ^2}} - \frac{ia\cos \theta }{\rho ^2}\sqrt{\frac{\Delta }{2\rho ^2}}\right) \iota ^{A'}. \end{aligned} \end{aligned}$$
(55)

1.3 Riemann Curvature Tensor of Kerr Metric

With the usual coordinate transformation \(c=\cos \theta \), the Kerr metric (1) becomes

$$\begin{aligned} g= & {} \left( 1-\frac{2Mr}{\rho ^2}\right) \mathrm {d}t^2 +\frac{4aMr(1-c^2)}{\rho ^2}\mathrm {d}t\mathrm {d}\varphi -\frac{\rho ^2}{\Delta }\mathrm {d}r^2- \frac{\rho ^2}{1-c^2}\mathrm {d}c^2\\&\quad -\frac{\sigma ^2}{\rho ^2}(1-c^2)\mathrm {d}\varphi ^2, \end{aligned}$$

where \(\rho ^2=r^2+a^2c^2\), \(\Delta =r^2-2Mr+a^2\) and \(\sigma ^2 = (r^2+a^2)\rho ^2+ 2Mra^2(1-c^2)\).

The nonzero components of the Riemann curvature tensor are

$$\begin{aligned} R_{r c r c}= & {} \frac{3 a^2c^2Mr - Mr^3}{(1 - c^2)\rho ^2\Delta },\, R_{rc \varphi t} = - \frac{ac(a^2c^2M - 3Mr^2)}{\rho ^4},\\ R_{r \varphi r \varphi }= & {} -\frac{(1 - c^2)}{\rho ^6 \Delta }(- 9 a^6c^2Mr + 6a^6c^4Mr + 12a^4c^2M^2r^2 - 12a^4c^4M^2r^2)\\&-\, \frac{(1 - c^2)}{\rho ^6 \Delta }(3 a^4Mr^3 - 14a^4c^2Mr^3 + 6a^4c^4Mr^3 - 4a^2M^2r^4)\\&-\, \frac{(1 - c^2)}{\rho ^6 \Delta }( + 4a^2c^2M^2r^4 + 4a^2Mr^5 - 5a^2c^2Mr^5 + Mr^7),\\ R_{r\varphi r t}= & {} \frac{a (1 - c2) (9a^4c^2Mr - 12 a^2c^2M^2r^2 - 3a^2Mr^3 + 9a^2c^2Mr^3 + 4M^2r^4 - 3Mr^5)}{\rho ^6 \Delta },\\ R_{r\varphi c \varphi }= & {} \frac{3a^2c(1 - c^2) (a^2 + r^2) (a^2c^2M - 3Mr^2)}{\rho ^6},\\ R_{r\varphi c t}= & {} -\frac{ac(- 3a^2 + 2a^2c^2 - r^2) (a^2c^2M - 3Mr^2)}{\rho ^6},\\ R_{rtrt}= & {} -\frac{(-9a^4c^2Mr {+} 3 a^4c^4Mr {+} 12a^2c^2M^2r^2 {+} 3a^2Mr^3 {-} 7a^2c^2Mr^3 {-} 4M^2r^4 {+} 2Mr^5)}{\rho ^6\Delta },\\ R_{rtc\varphi }= & {} -\frac{ac(-3a^2 + a^2c^2 - 2r^2) (a^2c^2M - 3Mr^2)}{\rho ^6},\, R_{rtct}= \frac{3a^2c(a^2c^2M -3Mr^2)}{\rho ^6},\\ R_{c \varphi c \varphi }= & {} \frac{9a^6c^2Mr + 3a^6c^4Mr + 6a^4c^2M^2r^2 - 6 a^4c^4M^2r^2 + 3a^4Mr^3 - 16a^4c^2Mr^3}{\rho ^6} \\&+\, \frac{3a^4c^4Mr^3 - 2a^2M^2r^4+ 2a^2c^2M^2r^4 + 5a^2Mr^5 - 7a^2c^2Mr^5 + 2Mr^7}{\rho ^6},\\ R_{c \varphi ct}= & {} -\frac{a(9a^4c^2Mr - 6a^2c^2M^2r^2 - 3a^2Mr^3 + 9a^2c^2Mr^3 + 2M^2r^4 - 3Mr^5)}{\rho ^6},\\ R_{ctct}= & {} \frac{- 9a^4c^2Mr + 6a^4c^4Mr + 6a^2c^2M^2r^2 + 3a^2Mr^3 - 5a^2c^2Mr^3 - 2M^2r^4 + Mr^5}{(1 - c^2)\rho ^6},\\ R_{\varphi t \varphi t}= & {} -\frac{(1 - c^2)\Delta (3a^2c^2Mr - M r^3)}{\rho ^6}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.X. Conformal Scattering Theory for the Dirac Equation on Kerr Spacetime. Ann. Henri Poincaré 23, 3053–3091 (2022). https://doi.org/10.1007/s00023-022-01155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01155-3

Mathematics Subject Classification

Navigation