Skip to main content
Log in

NO Synthase and NO-Dependent Signal Pathways in Brain Aging and Neurodegenerative Disorders: The Role of Oxidant/Antioxidant Balance

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nitric oxide and other reactive nitrogen species appear to play several crucial roles in the brain. These include physiological processes such as neuromodulation, neurotransmission and synaptic plasticity, and pathological processes such as neurodegeneration and neuroinflammation. There is increasing evidence that glial cells in the central nervous system can produce nitric oxide in vivo in response to stimulation by cytokines and that this production is mediated by the inducible isoform of nitric oxide synthase. Although the etiology and pathogenesis of the major neurodegenerative and neuroinflammatory disorders (Alzheimer's disease, amyothrophic lateral sclerosis, Parkinson's disease, Huntington's disease and multiple sclerosis) are unknown, numerous recent studies strongly suggest that reactive nitrogen species play an important role. Furthermore, these species are probably involved in brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. Recent evidence also indicates the importance of cytoprotective proteins such as heat shock proteins (HSPs) which appear to be critically involved in protection from nitrosative and oxidative stress. In this review, evidence for the involvement of nitrosative stress in the pathogenesis of the major neurodegenerative/ neuroinflammatory diseases and the mechanisms operating in brain as a response to imbalance in the oxidant/antioxidant status are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609-1623.

    Google Scholar 

  2. Halliwell, B. 1999 Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res. 31:261-272.

    Google Scholar 

  3. Knight, A. J. 1997. Reactive oxygen species and the neurodegenerative disorders. Ann. Clin. Lab. Sci. 27:11-25.

    Google Scholar 

  4. Davey, G. P., Peuchen, S., and Clark, J. B. 1998. Energy thresholds in brain mitochondria. J. Biol. Chem. 273:12753-12757.

    Google Scholar 

  5. Storz, G. and Tartaglia, L. A. 1992. OxyR: a regulator of antioxidant genes. J. Nutr. 122:627-639.

    Google Scholar 

  6. Tong, L., Toliver-Kinsky, T., Taglialatela, G., Werrbach-Perez, K., Wood, T., and Perez-Polo, R. 1998. Signal transduction in neuronal death. J. Neurochem. 71:447-459.

    Google Scholar 

  7. Wang, J. K., Kiyokawa, E., Verdin, E., and Trono, D. 2000. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl. Acad. Sci. USA 97:394-399.

    Google Scholar 

  8. Morimoto, R. I. and Santoro, M. G. 1998. Stress-inducible response and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnol. 16:833-838.

    Google Scholar 

  9. Santoro, M. G. 2000. Heat shock and the control of the stress response. Biochem. Pharmacol. 59:55-63.

    Google Scholar 

  10. Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. 2000. Endothelial Heme oxygenase-1 induction by hypoxia: modulation by inducible nitric oxide synthase (iNOS) and S-nitrosothiols. J. Biol. Chem. 275:13613-13620.

    Google Scholar 

  11. Baek, S. H., Kim, J. Y., Choi, J. H., Park, E. M., Han, M. Y., Kim, C. H., Ahn, Y. S., and Park, Y. M. 2000. Reduced glutathione oxidation ratio and 8 ohdG accumulation by mild ischemic pretreatment. Brain. Res. 856:28-36.

    Google Scholar 

  12. Calabrese, V., Copani, A., Testa, D., Ravagna, A., Spadaro, F., Tendi, E., Nicoletti, V. G., and Giuffrida Stella, A. M. 2000 Nitric oxide synthase induction in astroglial cell cultures: Effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res. 60:613-622.

    Google Scholar 

  13. Calabrese, V., Testa, D., Ravagna, A., Bates, T. E., and Giuffrida Stella, A. M. 2000. HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem. Biophys. Res. Comm. 269: 397-400.

    Google Scholar 

  14. Giuffrida Stella, A. M. 1991. Macromolecular changes in the aging brain. Pages 317-328, in: Timiras, P. S. et al., (eds), Plasticity and Regeneration of the nervous system, Plenum Press, New York.

    Google Scholar 

  15. Giuffrida Stella, A. M. and Lajtha, A. 1987. Macromolecular turnover in brain during aging. Gerontology 33:136-48.

    Google Scholar 

  16. Kirkwood, T. B. and Kowald, A. 1997. Network theory of aging. Exp. Gerontol. 32:395-399.

    Google Scholar 

  17. Sohal, R. S. 1997. Role of mitochondria and oxidative stress in the aging process. Pages 91-107, in: Flint Beal, M., Howell, N., Bodis-Wollner, I. (eds), Mitochondria and Free Radicals in Neurodegenerative diseases, Wiley-Liss, New York.

    Google Scholar 

  18. Benzi, G., Pastoris, O., Marzatico, F., Villa, R. F., Dagani, F., and Curti, D. 1992. The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol. Aging 13: 361-368.

    Google Scholar 

  19. Sohal, R. S., Sohal, B. H., and Orr, W. C., Mitochondria superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Rad. Biol. Med. 19:499-504.

  20. Davies, K. J. 1999. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41-47.

    Google Scholar 

  21. Han, J., Cheng F., Yang, Z., and Dryhurst G. 1999. Inhibitors of mitochondrial respiration, iron (II) and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson's disease. J. Neurochem. 73:1683-1695.

    Google Scholar 

  22. Gabbita, S. P., Lovell, M. A., and Markesbery, W. R. 1998. Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J. Neurochem. 71:2034-2040.

    Google Scholar 

  23. Li, W. P., Chan, W. Y., Lai, H. W., and Yew, D. T. 1997. Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J. Mol. Neurosci. 8:75-82.

    Google Scholar 

  24. Hirano, T., Yamaguchi, R., Asami, S., Iwamoto, N., and Kasai, H. 1996. 8-hydroxyguanine levels in nuclear DNA and its repair activity in rat organs associated with age. J. Gerontol. A. Biol. Sci. Med. Sci. 51:B303-7.

    Google Scholar 

  25. Tan, B. H., Bencsath, F. A., and Gaubatz, J. W. 1990. Steadystate levels of 7-methylguanine increase in nuclear DNA of postmitotic mouse tissues during aging. Mutat. Res. 237: 229-238.

    Google Scholar 

  26. Gaubatz, J. W. and Tan, B. H. 1993. Age-related studies on the removal of 7-methylguanine from DNA of mouse kidney tissue following N-methyl-N-nitrosourea treatment. Mutat. Res. 295:81-91.

    Google Scholar 

  27. Gaubatz, J. W. and Tan, B. H. 1994. Aging affects the levels of DNA damage in postmitotic cells. Ann. N. Y. Acad. Sci. 719:97-107.

    Google Scholar 

  28. Mandavilli, B. S. and Rao, K. S. 1996. Accumulation of DNA damage in aging neurons occurs through a mechanism other than apoptosis. J. Neurochem. 67:1559-1565.

    Google Scholar 

  29. Demple, B. and Harrison, L. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915-948.

    Google Scholar 

  30. Fujiwara, Y. 1996. The mechanisms of aging and perspective for elimination of deleterious effects. Nippon. Ronen. Igakkai. Zasshi. 33:499-502.

    Google Scholar 

  31. Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F. 1993. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34:609-616.

    Google Scholar 

  32. Beckman, K. B. and Ames, B. N. 1999. Endogenous oxidative damage of mtDNA. Mutat. Res. 424:51-58.

    Google Scholar 

  33. Radman, M., Matic, I., Halliday, J. A., and Taddei, F. 1995. Editing DNA replication and recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition to cancer in humans. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 347:97-103.

    Google Scholar 

  34. Mecocci, P., Beal, M. F., Cecchetti, R., Polidori, M. C., Cherubini, A., Chionne, F., Avellini, L., Romano, G., and Senin, U. 1997. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol. 31:53-64.

    Google Scholar 

  35. Bohr, V. A. and Dianov, G. L. 1999. Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie 81: 155-160.

    Google Scholar 

  36. Beckman, K. B. and Ames, B. N. 1998. Mitochondrial aging: open questions. Ann. N. Y. Acad. Sci. 854:118-127.

    Google Scholar 

  37. Schapira, A. H. 1998. Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta 1366:225-233.

    Google Scholar 

  38. Stadtman, E. R., Starke-Reed, P. E., Oliver, C. N., Carney, J. M., and Floyd, R. A. 1992. Protein modification in aging. EXS 62:64-72.

    Google Scholar 

  39. Tian, L., Cai, Q., and Wei, H. 1998. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med. 24: 1477-1484.

    Google Scholar 

  40. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum. R. W., Cheng, M. S., Wu, J. F., and Floyd, R. A. 1991. Reversal of agerelated increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alphaphenylnitrone. Proc. Natl. Acad. Sci. USA 88: 3633-3636.

    Google Scholar 

  41. Squier, T. C. and Bigelow, D. J. 2000 Protein oxidation and age-dependent alterations in calcium homeostasis. Front. Biosci. 5:504-526.

    Google Scholar 

  42. Verkhratsky, A. and Toescu E. 1998. Calcium and neuronal ageing. TINS 21:2-7.

    Google Scholar 

  43. Ojaimi, J., Masters, C. L., McLean, C., Opeskin, K., McKelvie, P., and Byrne, E. 1999. Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimer's disease. Ann. Neurol. 46:656-660.

    Google Scholar 

  44. Barja, G. 1999. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31:347-366.

    Google Scholar 

  45. Ruggiero, F. M., Cafagna, F., Petruzzella, V., Gadaleta, M. N., and Quagliariello, E. 1992. Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J. Neurochem. 59:487-491.

    Google Scholar 

  46. Giuffrida Stella, A. M. and Lajtha, A. 1983. Perspectives for neural regeneration with changes in macromolecular metabolism. Birth Defects: Original Article Series 19, vol. 4, Pages 23-32, in: Haber, B., Perez-Polo, R., Hashim, G. A., Giuffrida Stella, A. M., Nervous system regeneration, Alan Liss, New York.

    Google Scholar 

  47. Itoh K., Weis, S., Mehraein, P., and Muller-Hocker, J. 1996. Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol. Aging 17:843-848.

    Google Scholar 

  48. Calabrese, V., Distefano, A., Ricciardi, R., Calderone, A., and Rizza, V. 1992. Long term ethanol abuse enhances age dependent modulation of redox state in central and peripheral organs of rat: protection by L-carnitine. Neurosci. Lett. 43:18-21.

    Google Scholar 

  49. Villa, R. F., Turpeenoja, L., Benzi, G., and Giuffrida Stella, A. M. 1988. Action of L-acetylcarnitine on age-dependent modifications of mitochondrial membrane proteins from rat cerebellum. Neurochem. Res. 13:909-916.

    Google Scholar 

  50. Gorini, A., D'Angelo, A., and Villa, R. F. 1998. Energy metabolism of synaptosomal subpopulations from different neuronal systems of rat hippocampus: effect of L-acetylcarnitine administration in vivo. Neurochem. Res. 23:1485-1491.

    Google Scholar 

  51. Laganiere, S., and Yu, B. P. 1993. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 39:7-18.

    Google Scholar 

  52. Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J., and Lal, H. 1994. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74:121-133.

    Google Scholar 

  53. Gabbita, S. P., Butterfield, D. A., Hensley, K., Shaw, W., and Carney, J. M. 1997. Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation. Free Radic. Biol. Med. 23:191-201.

    Google Scholar 

  54. Mhatre, M. C. and Ticku, M. K. 1998. Caloric restriction retards the aging associated changes in gamma-aminobutyric acidA receptor gene expression in rat cerebellum. Brain Res. Mo.1 Brain Res. 54:270-275.

    Google Scholar 

  55. Joseph, J. A., Denisova, N., Fisher, D., Shukitt-Hale, B., Bickford, P., Prior, R., and Cao, G. 1998. Membrane and receptor modifications of oxidative stress vulnerability in aging. Nutritional considerations. Ann. NY Acad. Sci. 854:268-276.

    Google Scholar 

  56. Kass, G. E. and Orrenius, S. 1999. Calcium Signaling and Cytotoxicity. Environ. Health Perspect. 107:25-35.

    Google Scholar 

  57. Albers, D. S., Augood, S. J., Park, L. C., Browne, S. E., Martin, D. M., Adanson, J., Hutton, M., Standaert, D. G., Vonsattel, J. P., Gibson, G. E., and Beal, M. F. 2000 Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment. J. Neurochem. 74:878-881.

    Google Scholar 

  58. Dawson, R., Jr., Beal, M. F., Bondy, S. C., Di Monte, D. A., and Isom, G. E. 1995. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol. Appl. Pharmacol. 134:1-17.

    Google Scholar 

  59. Dawson, T. M., Zhang, J., Dawson, V. L., and Snyder, S. H. 1994. Nitric oxide: cellular regulation and neuronal injury. Prog. Brain. Res. 103:365-369.

    Google Scholar 

  60. Dyrks, T., Dyrks, E., Masters, C. L., and Beyreuther, K. 1993. FEBS Lett. 324:231-236.

    Google Scholar 

  61. Smith, C. D., Carney, J. M., Tatsumo, T., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. 1992. Protein oxidation in aging brain. Ann. NY Acad. Sci. 663:110-119.

    Google Scholar 

  62. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N. 1996. Oxidative damage in Alzheimer's. Nature 382:120-121.

    Google Scholar 

  63. Smith, M. A. and Perry, G. 1996. Alzheimer disease: proteinprotein interaction and oxidative stress. Bol. Estud. Med. Biol. 44:5-10.

    Google Scholar 

  64. Forster, M. J., Dubey, A., Dawson, K. M., Stutts, W. A., Lal, H., and Sohal, R. S. 1996. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA 93: 4765-4769.

    Google Scholar 

  65. Floyd, R. A. and Carney, J. M. 1992. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 32:22-27.

    Google Scholar 

  66. Halliwell and Gutteridge (1989) in Free Radicals in Biology and Medicine, pp 80, Clarendon Press, Oxford.

    Google Scholar 

  67. Fernandezcheca, J. C., Kaplowitz, N., Garciaruiz, C., Colell, A., Miranda, M., Mari, M., Ardite, E., and Morales, A. 1997. Gsh transport in mitochondria: defense against tnf-induced oxidative stress and alcohol-induced defect. Am. J. Physiol.-Gastrointestinal & Liver Physiol. 36:G7-G17.

    Google Scholar 

  68. Kristiián, T., Gertsch, J., Bates, T. E., and Siesjö., B. K. 2000. Characteristics of the calcium-triggered mitochondrial permeability transition in non-synaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J. Neurochem. 74: 1999-2009.

    Google Scholar 

  69. Chang, M. L., Klaidman, L. K., and Adams, J. D., Jr. 1997. The effects of oxidative stress on in vivo brain GSH turnover in young and mature mice. Mol. Chem. Neuropathol. 30:187-197.

    Google Scholar 

  70. Lipton, S. A., Rayudu, P. V., Choi, Y. B., Sucher, N. J., and Chen, H. S. 1998. Redox modulation of the NMDA receptor by NO-related species. Prog. Brain Res. 118:73-82.

    Google Scholar 

  71. Floyd, R. A. 1999. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. 222: 236-245.

    Google Scholar 

  72. Iwata Ichikawa, E., Kondo, Y., Miyazaki, I., Asanuma, M., and Ogawa, N. 1999. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J. Neurochem. 72:2334-2344.

    Google Scholar 

  73. Muller, W. E., Romero, F. J., Perovic, S., Pergande, G., and Pialoglou, P. 1997. Protection of flupirtine on beta-amyloidinduced apoptosis in neuronal cells in vitro: prevention of amyloid-induced glutathione depletion. J. Neurochem. 68: 2371-2377.

    Google Scholar 

  74. Favilli, F., Iantomasi, T., Marraccini, P., Stio, M., Lunghi, B., Treves, C., and Vincenzini, M. T. 1994. Relationship between age and GSH metabolism in synaptosomes of rat cerebral cortex. Neurobiol. Aging 15:429-433.

    Google Scholar 

  75. Cooper, A. J. and Kristal, B. S. (1997). Multiple roles og glutathione in the central nervous system. Biol. Chem. 378: 793-802.

    Google Scholar 

  76. Ignarro, L. J., Cirino, G., Casini, A., and Napoli, C. 1999. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34:879-886.

    Google Scholar 

  77. Yang, G., Chen, G., Ebner, T. J., and Iadecola, C. 1999. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. Am. J. Physiol. 277: R1760-70.

    Google Scholar 

  78. Knowles, R. G. and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J. 298:249-258.

    Google Scholar 

  79. Bredt, D. S. 1999. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res. 31: 577-596.

    Google Scholar 

  80. Pollock, J. S., Klinghofer, V., Forstermann, U., and Murad, F. 1992. Endothelial nitric oxide synthase is myristylated. FEBS Lett. 309:402-404.

    Google Scholar 

  81. Dawson, V. L. and Dawson, T. M. 1995. Physiological and toxicological actions of nitric oxide in the central nervous system. Adv. Pharmacol. 34:323-342.

    Google Scholar 

  82. Sharma, H. S., Nyberg, F., Westman, J., Alm, P., Gordh, T., and Lindholm, D. 1998. Brain derived neurotrophic factor and insulin like growth factor-l attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cord. An immunohistochemical study in the rat. Amino. Acids. 14:121-129.

    Google Scholar 

  83. Mori, M., Gotoh, T., Nagasaki, A., Takiguchi, M., and Sonoki, T. 1998. Regulation of the urea cycle enzyme genes in nitric oxide synthesis. J. Inherit. Metab. Dis. 21:59-57.

    Google Scholar 

  84. Radi, R. 1998. Peroxynitrite reactions and diffusion in biology. Chem. Res. Toxicol. 11:720-721.

    Google Scholar 

  85. Wiseman, H. and Halliwell, B. 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313:17-29.

    Google Scholar 

  86. Thomas, S. R., Davies, M. J., and Stocker, R. 1998. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite. Chem. Res. Toxicol. 11:484-494.

    Google Scholar 

  87. Koppal, T., Drake, J., Yatin, S., Jordan, B., Varadarajan, S., Bettenhausen, L., and Butterfield, D. A. 1999. Peroxynitrite-induced alterations in synaptosomal membrane proteins: insight into oxidative stress in Alzheimer's disease. J. Neurochem. 72:310-317.

    Google Scholar 

  88. Douki, T. and Cadet, J. 1996. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic. Res. 24:369-380.

    Google Scholar 

  89. Jourd'heuil, D., Hallen, K., Feelisch, M., and Grisham, M. B. 2000. Dynamic state of S-nitrosothiols in human plasma and whole blood. Free Radic. Biol. Med. 28:409-417.

    Google Scholar 

  90. Broillet, M. C. 1999. S-nitrosylation of proteins. Cell Mol. Life Sci. 55:1036-1042.

    Google Scholar 

  91. Lipton, S. A., Rayudu, P. V., Choi, Y. B., Sucher, N. J., and Chen, H. S. 1998. Redox modulation of the NMDA receptor by NO-related species. Prog. Brain Res. 118:73-82.

    Google Scholar 

  92. Zhang, J. and Snyder, S. H. 1992. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 89:9382-9385.

    Google Scholar 

  93. Mohr, S., Hallak, H., de Boitte, A., Lapetina, E. G., and Brune, B. 1999. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 274:9427-9430.

    Google Scholar 

  94. Heales, S. J., Davies, S. E., Bates, T. E., and Clark, J. B. 1995. Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem. Res. 20:31-38.

    Google Scholar 

  95. Nicoletti, V., Caruso, A., Tendi, E., Privitera, A., Console, A., Calabrese, V., Spadaro, F., Ravagna, A., Copani, A., and Giuffrida Stella, A. M. 1998. Effect of nitric oxide synthase induction on the expression of mitochondrial respiratory chain subunits in mixed cortical and astroglial cell cultures. Biochimie 80: 871-881.

    Google Scholar 

  96. Ignarro, L. J. 1989. Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Semin. Hematol. 26:63-76.

    Google Scholar 

  97. Gorbunov, N. V., Yalowich, J. C., Gaddam, A., Thampatty, P., Ritov, V. B., Kisin, E. R., Elsayed, N. M., and Kagan, V. E. 1997. Nitric oxide prevents oxidative damage produced by tertbutyl hydroperoxide in erythroleukemia cells via nitrosylation of heme and non-heme iron. Electron paramagnetic resonance evidence. J. Biol. Chem. 272:12328-12341.

    Google Scholar 

  98. Lipton, S. A., Choi, Y. B., Sucher, N. J., Pan, Z. H., and Stamler, J. S. 1996. Redox state, NMDA receptors and NO-related species [comment]. Trends. Pharmacol. Sci. 17:186-187.

    Google Scholar 

  99. Lipton, S. A. and Stamler, J. S. 1994. Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology 33:1229-1233.

    Google Scholar 

  100. Gunasekar, P. G., Kanthasamy, A. G., Borowitz, J. L., and Isom, G. E. 1995. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J. Neurochem. 65:2016-2021.

    Google Scholar 

  101. Beal, M. F. 1995. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38:357-366.

    Google Scholar 

  102. Papa, S. 1996. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim. Biophys. Acta 1276:87-105.

    Google Scholar 

  103. Papa, S. and Skulachev, V. P. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell. Biochem. 174: 305-319.

    Google Scholar 

  104. Papa, S., Scacco, S., Schliebs, M., Trappe, J., and Seibel, P. 1996. Mitochondrial diseases and aging. Mol. Aspects Med. 17: 513-563.

    Google Scholar 

  105. Lenaz, G. 1998. Role of mitochondria in oxidative stress and ageing. Biochim. Biophys. Acta 1336:53-67.

    Google Scholar 

  106. Bolanos, J. P., Almeida, A., Stewart, V., Peuchen, S., Land, J. M., Clark, J. B., and Heales, S. J. 1997. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68: 2227-2240.

    Google Scholar 

  107. Cleeter, M. W., Cooper, J. M., Darley Usmar, V. M., Moncada, S., and Schapira, A. H. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345:50-54.

    Google Scholar 

  108. Bolanos, J. P., Heales, S. J., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64:1965-1972.

    Google Scholar 

  109. Barker, J. E., Bolanos, J. P., Land, J. M., Clark, J. B., and Heales, S. J. 1996. Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci. 18:391-396.

    Google Scholar 

  110. Heales, S. J., Bolanos, J. P., Land, J. M., and Clark, J. B. 1994. Trolox protects mitochondrial complex IV from nitric oxidemediated damage in astrocytes. Brain Res. 668:243-245.

    Google Scholar 

  111. Barker, J. E., Heales, S. J., Cassidy, A., Bolanos, J. P., Land, J. M., and Clark, J. B. 1996. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Res. 716:118-122.

    Google Scholar 

  112. Canevari, L., Clark, J. B., and Bates, T. E. 1999. beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457:131-134.

    Google Scholar 

  113. Yamada, K., Noda, Y., Komori, Y., Sugihara, H., Hasegawa, T., and Nabeshima, T. 1996. Reduction in the number of NADPH-diaphorase-positive cells in the cerebral cortex and striatum in aged rats. Neurosci. Res. 24:393-402.

    Google Scholar 

  114. Uttenthal, L. O., Alonso, D., Fernandez, A. P., Campbell, R. O., Moro, M. A., Leza, J. C., Lizasoain, I., Esteban, F. J., Barroso, J. B., Valderrama, R., Pedrosa, J. A., Peinado, M. A., Serrano, J., Richart, A., Bentura, M. L., Santacana, M., Martinez-Murillo, R., and Rodrigo, J. 1998. Neuronal and inducible nitric oxide synthase and nitrotyrosine immunoreactivities in the cerebral cortex of the aging rat. Microsc. Res. Tech. 43:75-88.

    Google Scholar 

  115. Vernet, D., Bonavera, J. J., Swerdloff, R. S., Gonzalez-Cadavid, N. F., and Wang, C. 1998. Spontaneous expression of inducible nitric oxide synthase in the hypothalamus and other brain regions of aging rats. Endocrinology 139:3254-3261.

    Google Scholar 

  116. Inada, K., Yokoi, I., Kabuto, H., Namba, Y., and Ogawa, N. 1997 The effects of chronic administration of nimodipine on agerelated changes in nitric oxide and its synthase in senescence-accelerated mouse brain. Biochem. Mol, Biol. Int. 41:753-765.

    Google Scholar 

  117. Cannon, J. G. 1995. Cytokines in aging and muscle homeostasis. J. Gerontol. A. Biol. Sci. Med. Sci. 50:120-123.

    Google Scholar 

  118. Spangelo, B. L., Judd, A. M., Call, G. B., Zumwalt, J., and Gorospe, W. C. 1995. Role of the cytokines in the hypothalamic-pituitary-adrenal and gonadal axes. Neuroimmunomod. 2: 299-312.

    Google Scholar 

  119. McCann, S. M. 1997. The nitric oxide hypothesis of brain aging. Exp. Gerontol. 32:431-440.

    Google Scholar 

  120. McCann, S. M., Licinio, J., Wong, M. L., Yu, W. H., Karanth, S., and Rettorri, V. 1998. The nitric oxide hypothesis of aging. Exp. Gerontol. 33:813-826.

    Google Scholar 

  121. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823-827.

    Google Scholar 

  122. Chagnon, P., Betard, C., Robitaille, Y., Cholette, A., and Gauvreau, D. 1995. Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. NeuroReport. 6:711-715.

    Google Scholar 

  123. Schapira, A. H. 1998. Mitochondrial dysfunction in neurodegenerative disorders. Biochim. Biophys. Acta 1366:225-233.

    Google Scholar 

  124. Markesbery, W. R. 1997. Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23:134-147.

    Google Scholar 

  125. Boka, G., Anglade, P., Wallach, D., Javoy Agid, F., Agid, Y., and Hirsch, E. C. 1994. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett. 172:151-154.

    Google Scholar 

  126. Mrak, R. E., Sheng, J. G., and Griffin, W. S. 1995. Glial cytokines in Alzheimer's disease: review and pathogenic implications. Hum. Pathol. 26:816-823.

    Google Scholar 

  127. Chao, C. C., Hu, S., and Peterson, P. K. 1995. Glia, cytokines, and neurotoxicity. Crit. Rev. Neurobiol. 9:189-205.

    Google Scholar 

  128. Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt Prigent, A., Agid, Y., and Hirsch, E. C. 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72:355-363.

    Google Scholar 

  129. Jenner, P. and Olanow, C. W. 1998. Understanding cell death in Parkinson's disease. Ann. Neurol. 44:S72-84.

    Google Scholar 

  130. Przedborski, S., Jackson Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. 1996. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93:4565-4571.

    Google Scholar 

  131. Sheng, J. G., Mrak, R. E., and Griffin, W. S. 1994. S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J. Neurosci. Res. 39:398-404.

    Google Scholar 

  132. Hu, J., Castets, F., Guevara, J. L., and Van Eldik, L. J. 1996. S100 beta stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J. Biol. Chem. 271:2543-2547.

    Google Scholar 

  133. Hogg, N., Darley Usmar, V. M., Wilson, M. T., and Moncada, S. 1992. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 281:419-424.

    Google Scholar 

  134. Sergent, O., Griffon, B., Morel, I., Chevanne, M., Dubos, M. P., Cillard, P., and Cillard, J. 1997. Effect of nitric oxide on iron-mediated oxidative stress in primary rat hepatocyte culture. Hepatology 25:122-127.

    Google Scholar 

  135. Puntarulo, S. and Cederbaum, A. I. 1997. Inhibition of ferritinstimulated microsomal production of reactive oxygen intermediates by nitric oxide. Arch. Biochem. Biophys. 340:19-26.

    Google Scholar 

  136. Lipton, S. A., Choi, Y. B., Sucher, N. J., Pan, Z. H., and Stamler, J. S. 1996. Redox state, NMDA receptors and NO-related species [comment]. Trends. Pharmacol. Sci. 17:186-187.

    Google Scholar 

  137. Rossig, L., Fichtlscherer, B., Breitschopf, K., Haendeler, J., Zeiher, A. M., Mulsch, A., and Dimmeler, S. 1999. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J. Biol. Chem. 274:6823-6826.

    Google Scholar 

  138. Farinelli, S. E., Park, D. S., and Greene, L. A. 1996. Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J. Neurosci. 16:2325-2334.

    Google Scholar 

  139. Park, S. K., Lin, H. L., and Murphy, S. 1997. Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kappaB binding to DNA. Biochem. J. 322:609-613.

    Google Scholar 

  140. Mohr, S., Hallak, H., de Boitte, A., Lapetina, E. G., and Brune, B. 1999. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 274:9427-9430.

    Google Scholar 

  141. Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N., and Chuang, D. M. 1998. Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol. Pharmacol. 53:701-707.

    Google Scholar 

  142. Rosenberg, P. A., Li, Y., Ali, S., Altiok, N., Back, S. A., and Volpe, J. J. 1999. Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J. Neurochem. 73:476-484.

    Google Scholar 

  143. Gold, R., Zielasek, J., Kiefer, R., Toyka, K. V., and Hartung, H. P. 1996. Secretion of nitrite by Schwann cells and its effect on T-cell activation in vitro. Cell Immunol. 168:69-77.

    Google Scholar 

  144. Mattson, M., Culmsee, C., Zaifang, Yu., and Camandola, S. 2000. Roles of nuclear factor kB in neuronal survival and plasticity. 74:443-456.

    Google Scholar 

  145. Taylor, B. S., de Vera, M. E., Ganster, R. W., Wang, Q., Shapiro, R. A., Morris, S. M., Billiar, T. R., and Geller, D. A. 1998. Multiple NFkB enhancer elements regulate cytokine induction of the human of the human inducible nitric oxide synthase gene. J. Biol. Chem. 273:15148-15156.

    Google Scholar 

  146. Mirza, A., Liu, S. L., Frizell, E., Zhu, J., Maddukuri, S., Martinez, J., Davies, P., Schwarting, R., Norton, P., and Zern, M. A. 1997. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am. J. Physiol. 272:281-288.

    Google Scholar 

  147. Zong, W. X., Edelstein, L. C., Chen, C., Bash, J., and Gelinas, C. 1999. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes. Dev. 13:382-387.

    Google Scholar 

  148. Mattson, M. P., Goodman, Y., Luo, H., Fu, W., and Furukawa, K. 1997. Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49:681-697.

    Google Scholar 

  149. Walton, M., Connor, B., Lawlor, P., Young, D., Sirimanne, E., Gluckman, P., Cole, G., and Dragunow, M. 1999. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res. Brain Res. Rev. 29:137-168.

    Google Scholar 

  150. Matsuoka, K., Kitamura, Y., Okazaki, M., Terai, K., and Taniguchi, T. 1999. Kainic acid-induced activation of nuclear factor-kB in rat hippocampus. Exp. Brain Res. 124:215-222.

    Google Scholar 

  151. Yang, R., Mu, X., and Hayes, R. L. 1995. Increased cortical nuclear factor-kB DNA binding activity after traumatic brain injury in rats. Neurosci. Lett. 197:101-104.

    Google Scholar 

  152. Kaltschmidt, B., Uherek, M., Volk, B., Baeuerle, P. A., and Kaltschmidt, C. 1997. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA 94:2642-2647.

    Google Scholar 

  153. Migheli, A., Piva, R., Atzori, C., Troost, D., and Schiffer, D. 1997. c-Jun, JNK/SAPK kinases and transcription factor NFkappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 56:1314-1322.

    Google Scholar 

  154. Bruce-Keller, A. J., Geddes, J. W., Knapp, P. E., McFall, R. W., Keller, J. N., Holtsberg, F. W., Parthasarathy, S., Steiner, S. M., and Mattson, M. P. 1999. Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J. Neuroimmunol. 93:53-71.

    Google Scholar 

  155. Wernyj, R. P., Mattson, M. P., and Christakos, S. 1999. Expression of calbindin-D28k in C6 glial cells stabilizes intracellular calcium levels and protects against apoptosis induced by calcium ionophore and amyloid beta-peptide. Brain Res. Mol. Brain. Res. 64:69-79.

    Google Scholar 

  156. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V., and Baldwin, A. S. 1998. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680-1683.

    Google Scholar 

  157. Qin, Z. H., Wang, Y., Nakai, M., and Chase, T. N. 1998. Nuclear factor-kappa B contributes to excitotoxin-induced apoptosis in rat striatum. Mol. Pharmacol. 53:33-42.

    Google Scholar 

  158. Kasibhatla, S., Brunner, T., Genestier, L., Echeverri, F., Mahboubi, A., and Green, D. R. (1998) DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol. Cell 4:543-551.

    Google Scholar 

  159. Abraham, N. G., Jiang, S., Yang, L., Zand, B. A., Laniado-Schwartzman, M., Marji, J., Drummond, G. S., and Kappas, A. 2000. Adenoviral vector-mediated transfer of human heme oxygenase in rats decreases renal heme-dependent arachidonic acid epoxygenase activity. J. Pharmacol. Exp. Ther. 293:494-500.

    Google Scholar 

  160. Yenay, M. A., Giffard, R., Sapolsky, R. M., and Steinberg, G. K. 1999. The neuroprotective potential of heat shock protein (HSP70). Mol. Med. Tod. 51:525-531.

    Google Scholar 

  161. Yenari, M. A., Fink, S. L., Sun, G. H., Chang, L. K., Patel, M. K., Kunis, D. M., Onley, D., Ho, D. Y., Sapolsky, R. M., and Steinberg, G. K. 1998. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 44:584-591.

    Google Scholar 

  162. Hata, R., Gass, P., Mies, G., Wiessner, C., and Hossmann, K. A. 1998. Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury. J. Cereb. Blood. Flow. Metab. 18:1325-1335.

    Google Scholar 

  163. Nishimura, R. N. and Dwyer, B. E. 1995. Pharmacological induction of heat shock protein 68 synthesis in cultured rat astrocytes. J. Biol. Chem. 270:29967-29970.

    Google Scholar 

  164. Fink, S. L., Chang, L. K., Ho, D. Y., and Sapolsky, R. M. 1997. Defective herpes simplex virus vectors expressing the rat brain stress-inducible heat shock protein 72 protect cultured neurons from severe heat shock. J. Neurochem. 68:961-969.

    Google Scholar 

  165. Huot, J., Houle, F., Marceau, F., and Landry, J. 1997. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ. Res. 80:383-392.

    Google Scholar 

  166. Takayama, S., Bimston, D. N., Matsuzawa, S., Freeman, B. C., Aime-Sempe, C., Xie, Z., Morimoto, R. I., and Reed, J. C. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16:4887-4896.

    Google Scholar 

  167. Laney, J. D. and Hochstrasser, M. 1999. Substrate targeting in the ubiquitin system. Cell 97:427-430.

    Google Scholar 

  168. Mairesse, N., Bernaert, D., Del Bino, G., Horman, S., Mosselmans, R., Robaye, B., and Galand, P. 1998. Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H2O2 in an oxidative stress-resistant cell line. J. Cell Physiol. 177:606-617.

    Google Scholar 

  169. Turner, C. P., Panter, S. S., and Sharp, F. R. 1999. Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res. Mol. Brain Res. 65:87-102.

    Google Scholar 

  170. Sharp, F. R., Massa, S., and Swanson R. A. 1999. Heat shock protein protection. TINS 22:97-99.

    Google Scholar 

  171. Maines, M. D. 1997. The heme oxygenase system; a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37:517-554.

    Google Scholar 

  172. Morano, K. A. and Thiele, D. J. 1999. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr. 7:271-282.

    Google Scholar 

  173. Panahian, N., Yoshiura, M., and Maines, M. D. 1999. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72:1187-1203.

    Google Scholar 

  174. Schipper, H. M., Cissè , S., and Stopa, E. G. 1995. Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann. Neurol. 37:758-768.

    Google Scholar 

  175. Schipper, H. M., Liberman, A., and Stopa, E. G. 1998. Neural Heme oxygenase-1 expression in idiopathic Parkinson's disease. Exp. Neurol. 150:60-68.

    Google Scholar 

  176. Turner, C. P., Bergeron, M., Matz, P., Zegna, A., Noble, L. J., Panter, S. S., and Sharp, F. R. 1998. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J. Cereb. Blood. Flow Metab. 18:257-273.

    Google Scholar 

  177. Nath, K. A., Haggard, J. J., Croatt, A. J., Grande, J. P., Poss, K. D., and Alam, J. 2000. The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. Am. J. Pathol. 156:1527-1535.

    Google Scholar 

  178. Ewing, J. F. and Maines, M. D. 1991. Rapid induction of heme oxygenase 1 mRNA and protein by hyperhermia in rat brain: heme oxygenase 2 is not a heat shock protein. Proc. Natl. Acad. Sci. USA 88:5364-5368.

    Google Scholar 

  179. Piantadosi, C. A., Zhang, J., Levin, E. D., Folz, R. J., and Schmechel, D. E. 1997. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp. Neurol. 147:103-114.

    Google Scholar 

  180. Dawson, T. M., Dawson, V. L., and Snyder, S. H. 1994. Molecular mechanisms of nitric oxide actions in the brain. Ann. NY Acad. Sci. 738:76-85.

    Google Scholar 

  181. Graser, T., vedernikov, Y. P., and Li, D. S. 1990. Study on the mechanism of carbon monoxide induced endothelium-independent relaxation in porcine coronary artery and vein. Biomed. Biochim. Acta 49:293-296.

    Google Scholar 

  182. Glaum, S. R. and Miller, R. J. 1993. Zinc protoporphyrin-IX blocks the effects of metabotropic glutamate receptor activation in the rat nucleus tractus solitarii. Mol. Pharmacol. 43:965-969.

    Google Scholar 

  183. Takeda, A., Perry, G., Abraham, N. G., Dwyer, B. E., Kutty, R. K., Laitinen, J. T., Petersen, R. B., and Smith, M. A. 2000. Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J. Biol. Chem. 275:5395-5399.

    Google Scholar 

  184. White, L. A. and Marletta, M. A. 1992. Nitric oxide synthase is a cytochrome P-450 hemoprotein. Biochemistry 31:6627-6631.

    Google Scholar 

  185. Sharma, H. S., Westman, J., and Nyberg, F. 1998. Pathophysiology of brain edema and cell changes following hypertermic brain injury. Pages 351-412, in: Sharma, H. S., Westman, J. (eds) Brain function in hot environment (Vol. 115) Progress in brain research, Elsevier, Amsterdam.

    Google Scholar 

  186. Foresti, R. and Motterlini R. 1999. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Rad. Res. 31:459-475.

    Google Scholar 

  187. Turcanu, V., Dhouib, M., and Poindron, P. 1998. Nitric oxide synthase inhibition by haeme oxigenase decreases macrophage nitric oxide-dependent cytotoxicity: a negative feedback mechanism for the regulation of nitric oxide production. Res. Immunol. 149:741-744.

    Google Scholar 

  188. Rosen, D. R., Siddique, T., and Patterson, D. 1993. Mutations in Cu/Zn SOD gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59-62.

    Google Scholar 

  189. Brwon, R. H. 1994. Clinical implications of basic research: a transgenic-mouse model of amyothrophic lateral sclerosis. N. Engl. J. Med. 331:1091-1092.

    Google Scholar 

  190. Beckman, J. S., Carlson, M., Smith, C. D., and Koppenol, W. H. 1993. ALS, SOD and peroxynitrite. Nature 364:584.

    Google Scholar 

  191. Menschik, E. D. and Finkel, L. H. 1999 Cholinergic neuromodulation and Alzheimer's disease: from single cells to network simulations. Prog. Brain Res. 121:19-45.

    Google Scholar 

  192. Christen, Y. 2000. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71:621S-629S.

    Google Scholar 

  193. Munch, G., Schinzel, R., Loske, C., Wong, A., Durany, N., Li, J. J., Vlassara, H., Smith, M. A., Perry, G., and Riederer, P. 1998. Alzheimer's disease. Synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J. Neural Transm. 105:439-461.

    Google Scholar 

  194. Bartzokis, G., Sultzer, D., Cummings, J., Holt, L. E., Hance, D. B., Henderson, V. W., and Mintz, J. 2000. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch. Gen. Psychiatry 57:47-53.

    Google Scholar 

  195. Sayre, L. M., Perry, G., Harris, P. L., Liu, Y., Schubert, K. A., and Smith, M. A. 2000. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J. Neurochem. 74:270-279.

    Google Scholar 

  196. El Khoury, J., Hickman, S. E., Thomas, C. A., Loike, J. D., and Silverstein, S. C. 198. Microglia, scavenger receptors, and the pathogenesis of Alzheimer's disease. Neurobiol. Aging 19:S81-4.

  197. Markesbery, W. R. 1997. Oxidative stress hypothesis in Alzheimer's disease. Free Rad. Biol. Med. 23:134-147.

    Google Scholar 

  198. Butterfield, D. A. and Stadtman, E. R. 1997. Protein oxidation processes in aging brain, Adv. Cell Aging Gerontol. 2:161-191.

    Google Scholar 

  199. Butterfield, D. A., Koppal, T., Subramaniam, R., and Yatin, S. 1999. Vitamin E as an antioxidant/free radical scavenger against amyloid β-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: Insights into Alzheimer's disease. Rev. Neurosci. 10:141-149.

    Google Scholar 

  200. Koppal, T., Subramaniam, R., Drake, J., Prasad, R. P., Dhillon, H., and Butterfield, D. A. 1998 Vitamin E protects against Alzheimer's amyloid peptide (25-35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 786:270-273.

    Google Scholar 

  201. Yatin, S. M., Kink, C. D., and Butterfield, D. A. 1999 In-vitro and in-vivo oxidative stress associated with Alzheimer's amyloid β-peptide (1-42). Neurobiol. of Aging 20:325-330.

    Google Scholar 

  202. Butterfield, D. A. 1999. On methionine and Alzheimer's amyloid. β-peptide (1-42)-induced oxidative stress. Neurobiol. of Aging 20:339-342.

    Google Scholar 

  203. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. E., and Carney, J. M. 1995. Direct evidence of oxidative injury by the Alzheimer's amyloid β-peptide in cultured hippocampal neurons. Exp. Neurol. 131:193-202.

    Google Scholar 

  204. Butterfield, D. A. 1997 β-Amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer's disease. Chem. Res. Toxicol. 10:495-506.

    Google Scholar 

  205. Jen, L. S., Hart, A. J., Jen, A., Relvas, J. B., and Gentleman, S. M. 1998 Alzheimer's peptide kills cells of retina in vivo. Nature. 392:140-141.

    Google Scholar 

  206. Gwebu, E. T., Williams, J., Mathis, D., Warden, J. A., Selassie, M., Richardson, S., and Gwebu, N. T. 1997 Cytotoxicity of β-amyloid peptide 25-35 on vascular smooth muscle cells and attenuation by vitamin E. In Vitro Cell Dev. Biol. Anim. 33:672-673.

    Google Scholar 

  207. Thomas, T., Thomas, G., McLendon, C., Sutton, T., and Mullan, M. 1996 β-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168-171.

    Google Scholar 

  208. Zaman, Z., Roche, S., Fielden, P., Niriella, D. C., and Cayley, A. C. 1992. Plasma concentrations of vitamin A and E and carotenoids in Alzheimer's disease. Age Ageing 21:91-94.

    Google Scholar 

  209. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S., and Thal, L. J. 1997. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's disease cooperative study, N. Engl. J. Med. 336:1216-1222.

    Google Scholar 

  210. Peyser, C. E., Folstein, M., Chase, G. A., Starkstein, S., Brandt, J., Cockrell, J. R., Bylsma, F., Coyle, J. T., McHugh, P. R., and Folstein, S. E. 1995. Trial of d-α-tocopherol in Huntington's disease. Amer. J. Psychiatry 152:1771-1775.

    Google Scholar 

  211. Reider, C. R. and Paulson, G. W. 1997 Lou Gehrig and amyotrophic lateral sclerosis. Is vitamin E to be revisited? Arch. Neurol. 54:527-528.

    Google Scholar 

  212. Ilic, T. V., Jovanovic, M., Jovicic, A., and Tomovic, M. 1999. Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct. Neurol. 14:141-147.

    Google Scholar 

  213. Dexter, D. T., Holley, A. E., Flitter, W. D., Slater, T. F., Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D. 1994. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov. Disord 9:92-97.

    Google Scholar 

  214. Spencer, J. P., Jenner, P., Daniel, S. E., Lees, A. J., Marsden, D. C., and Halliwell, B. 1998. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71:2112-2122.

    Google Scholar 

  215. Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S., Lees, A. J., Jenner, P., and Marsden, C. D. 1991. Alterations in the levels of iron ferritin and other trace metals in Parkinson's diseases affecting the basal ganglia. Brain 114: 1953-1975.

    Google Scholar 

  216. Gerlach, M., Ben-Shachar, D., Rieder, P., and Youdim, M. B. H. 1994. Altered brain metabolism of iron as cause of neurodegenerative disease. 63:793-807.

    Google Scholar 

  217. Li H., Dryhurst, G. 1997. Irreversible inhibition of mitochondrial complex I by 2-aminoethyl-3,4-dyhydro-5-hydroxy-2-benzothiazine-3-carboxylic acid (DHBT): a putative nigral endotoxin of relevance to Parkinson's disease. J. Neurochem. 69:1530-1541.

    Google Scholar 

  218. Spencer, J., Jenner, A., Aruoma, O., Evans, P., Jenner, P., Lees, A., Marsden, D., and Halliwell, B. 1994. Intense oxidative DNA damage promoted by L-DOPA and its metabolites. Implication for neurodegenerative diseases. FEBS Lett. 353:246-250.

    Google Scholar 

  219. Perry, T. L., Godin, D. V., and Hansen, S. 1982. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett. 33:305-310.

    Google Scholar 

  220. Sian, J., Dexter, D. T., and Lees, A. J. 1994. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting the basal ganglia. Ann. Neurol. 36: 348-355.

    Google Scholar 

  221. Hunot, S., Brugg, B., Richard, D., Michel, P. P., Muriel, M. P., Ruberg, M., Faucheux, B. A., Agid, Y., and Hirsch, E. C. 1997. Nuclear Translocation of NF-kB is increased in dopaminergic neurons of patients with Parkinson's disease. Proc. Natl. Acad. Sci. USA 94:7531-7536.

    Google Scholar 

  222. France-Lanord, V., Brugg, B., Michel, P. P., Agid, Y., and Ruberg, M. 1997. Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson's disease. J. Neurochem. 69:1612-1621.

    Google Scholar 

  223. Schapira, A. H. V., Cooper, J. M., and Dexter, D. 1990. Mitochondrial complex I deficiency in Parkinson disease. J. Neurochem. 54:823-827.

    Google Scholar 

  224. Beal, M. F. 1998 Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis Ann. Neurol. 44:S110-4.

    Google Scholar 

  225. Risch, N. and Merikangas, K. 1996. The future of genetic studies of complex human diseases. Science 273:1516-1517.

    Google Scholar 

  226. Storch, M. K., Piddlesden, S., Haltia, M., Iivanainen, M., Morgan, P., and Lassmann, H. 1998. Multiple sclerosis: in situ evidence for antibody-and complement-mediated demyelination. Ann. Neurol. 43:465-471.

    Google Scholar 

  227. Lindsey, J. W., Kerman, R. H., and Wolinsky, J. S. 1997. T cell-T cell activation in multiple sclerosis, Mult. Scler. 3:238-242.

    Google Scholar 

  228. van Noort, J. M., van Sechel, A. C., van Stipdonk M. J., and Bajramovic, J. J. 1998 The small heat shock protein alpha Bcrystallin as key autoantigen in multiple sclerosis. Prog. Brain Res. 117:435-452.

    Google Scholar 

  229. van Noort, J. M. 1996 Multiple sclerosis: an altered immune response or an altered stress response? J. Mol. Med. 74:285-296.

    Google Scholar 

  230. Toshniwal, P. K. and Zarling, E. J. 1992. Evidence for increased lipid peroxidation in multiple sclerosis. Neurochem. Res. 17: 205-207.

    Google Scholar 

  231. Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley D., and Trapp, B. D. 1994. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains, Ann. Neurol. 36:778-786.

    Google Scholar 

  232. Hooper, D. C., Bagasra, O., Marini, J. C., Zborek, A., Ohnishi, S. T., Kean, R., Champion, J. M., Sarker, A. B., Bobroski, L., Farber, J. L., Akaike, T., Maeda, H., and Koprowski, H. 1997. Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis, Proc. Natl. Acad. Sci. USA 94: 2528-2533.

    Google Scholar 

  233. Evans, P. H. 1993. Free radical in brain metabolism and pathology. Br. Med. Bull. 49:577-587.

    Google Scholar 

  234. De Voldr, A., Bol, A., Michel, C., Cogneau, M., Evrard, P., Lyon, G., and Goffinet, A. M. 1988. Brain glucose utilization in childhood Huntington's disease studied with positron emission tomography (PET). Brain Dev. 10:47-50.

    Google Scholar 

  235. Sokoloff, L. 1986. Cerebral circulation, energy metabolism, and protein synthesis: general characteristics and principles of measurement. Pages 1-71, in Phelps, M. E., Mazziotta, J. C., Schelbert, H. R. (eds), Positron Emission Tomography and Autoradiography: Principles and applications for the brain and heart. Raven press, New York.

    Google Scholar 

  236. Jenkins, B., Koroshetz, W., Beal, M. F., and Rosen, B. 1993. Evidence for an energy metabolism defect in Huntington's disease using localized proton spectroscopy. Neurol. 43:2689-2695.

    Google Scholar 

  237. Nicoli, F., Vion-Dury, J., Maloteaux, J. M., Delwaide, C., Confort-Gouny, S., Sciaky, M., and Cozzone, P. J. 1993. CSF and serum metabolic profile of patients with Huntington's chorea: a study by high resolution proton NMR spectroscopy and HPLC. Neurosci. Lett. 154:47-51.

    Google Scholar 

  238. Browne, S. E. 1997. Mitochondrial dysfunction and oxidative damage in Huntington's disease. in Flint Beal, M., Howell, N., Bodis-Wollner, I. (eds), Mitochondria and Free Radicals in Neurodegenerative diseases, Wiley-Liss, New York.

    Google Scholar 

  239. Morgan Hughes, J. A., Sweeney, M. G., Cooper, J. M., Hammans, S. R., Brockington, M., Schapira, A. H., Harding, A. E., and Clark, J. B. 1995. Mitochondrial DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim. Biophys. Acta 1271:135-140.

    Google Scholar 

  240. Wallace, D. C. 1999. Mitochondrial diseases in man and mouse. Science 283:1482-1488.

    Google Scholar 

  241. Xu, Q., Hu, Y., Kleindienst, M., and Wick, G. 1997. Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J. Clin. Invest. 100:1089-1097.

    Google Scholar 

  242. Calabrese, V., Renis, M., Calderone, A., Russo, A., Reale, S., Barcellona, M. L., and Rizza, V. 1998. Stress proteins and SH-groups in oxidant-induced cell injury after chronic ethanol administration in rat. Free Radical Biol. Med. 24: 1159-1167.

    Google Scholar 

  243. Polla, B. S., Kantengwa, S., Francois, D., Salvioli, S., Franceschi, C., Marsac, C., and Cossarizza, A. 1996. Mitochondria are selective target for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. USA 93: 6458-6463.

    Google Scholar 

  244. Santoro, M. G. and Roberts, S. M. Serch for novel cytoprotective and antiviral prostanoids. 1999. Drug News Perspect 12: 395-400.

    Google Scholar 

  245. Stephanou, A., Isenberg, D. A., Nakajima, K., and Latchman, D. S. 1999. Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90beta gene promoters. J. Biol. Chem. 274:1723-1728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, V., Bates, T.E. & Stella, A.M.G. NO Synthase and NO-Dependent Signal Pathways in Brain Aging and Neurodegenerative Disorders: The Role of Oxidant/Antioxidant Balance. Neurochem Res 25, 1315–1341 (2000). https://doi.org/10.1023/A:1007604414773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007604414773

Navigation