Skip to main content
Log in

Assessment of Polymer-Polymer Interactions in Blends of HPMC and Film Forming Polymers by Modulated Temperature Differential Scanning Calorimetry

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To assess the miscibility and phase behavior of binary blendsof hydroxypropylmethyl cellulose (HPMC) with hydroxypropylcellulose (HPC), methylcellulose (MC), and polyvinylpyrrolidone (PVP).

Methods. Polymer-polymer miscibility was assessed by measurementof the glass transition temperature (Tg) and the width of the glasstransition temperature (W-Tg), using modulated temperaturedifferential scanning calorimetry (MTDSC).

Results. HPMC K4M/PVP and HPMC E5/MC blends were miscibleas evidenced by a single, composition dependent, Tg throughout theentire composition range. HPMC/HPC blends were immiscible at allcompositions. For the miscible blends, the variation in Tg with blendcomposition was compared to the values predicted by the Fox andCouchman-Karasz equations. At intermediate blend compositions,HPMC K4M/PVP blends exhibited negative deviations from idealbehavior. The Tg of the HPMC E5/MC blends was found to followthe Fox equation. The W-Tg measurements of the miscible blends gaveevidence of phase separation at certain compositions.

Conclusions. MTDSC was shown to be a useful technique incharacterizing the interactions between some commonly used pharmaceuticalpolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Sakellariou and R. C. Rowe. Interactions in cellulose derivative films for oral drug delivery. Prog. Polym. Sci. 20:889–942 (1995).

    Google Scholar 

  2. H. Huatan, J. H. Collett, and D. C. Attwood. The microencapsulation of protein using a novel ternary blend based on poly(epsilon-caprolactone). J. Microencapsul. 12:557–567 (1995).

    Google Scholar 

  3. M. Tobio, J. Nolley, Y. Guo, J. McIver, and M. J. Alonso. A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle. Pharm. Res. 16:682–688 (1999).

    Google Scholar 

  4. Y. Morita, H. Saino, and K. Tojo. Polymer blend implant for ocular delivery of fluorometholone. Biol. Pharm. Bull. 21:72–75 (1998).

    Google Scholar 

  5. O. Olabisi, L. M. Robeson, and M. T. Shaw. Poylmer-Polymer Miscibility, Academic Press, New York, 1979.

    Google Scholar 

  6. M. Song, A. Hammiche, H. M. Pollock, D. J. Hourston, and M. Reading. Modulated differential scanning calorimetry: 4. Miscibility and glass transition behavior in poly(methylmethacrylate) and poly(epichlorohydrin) blends. Polymer 37:5661–5665 (1996).

    Google Scholar 

  7. A. Hale and H. E. Blair. Polymer blends and block copolymers. In E. A. Turi (ed.), Thermal Characterization of Polymeric Materials, (2nd Ed.), Academic Press, San Diego, 1997, pp. 745–886.

    Google Scholar 

  8. B. Wunderlich. The basis of thermal analysis. In E. A. Turi (ed.), Thermal Characterization of Polymeric Materials, (2nd Ed.), Academic Press, San Diego, 1997, pp. 205–482.

    Google Scholar 

  9. M. Reading, D. Elliot, and V. L. Hill. A new approach to the calorimetric investigation of physical and chemical transitions. J. Therm. Anal. 40:949–955 (1993).

    Google Scholar 

  10. N. J. Coleman and D. Q. M. Craig. Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis. Int. J. Pharm. 135:13–29 (1996).

    Google Scholar 

  11. E. Doelker. Cellulose derivatives. Adv. Polym. Sci. 107:200–265 (1993).

    Google Scholar 

  12. M. Song, A. Hammiche, H. M. Pollock, D. J. Hourston, and M. Reading. Modulated differential scanning calorimetry: 1. A study of the glass-transition behavior of blends of poly(methyl methacrylate) and poly(styrene-co-acrylonitrile). Polymer 36:3313–3316 (1995).

    Google Scholar 

  13. B. C. Hancock and G. Zografi. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 11:471–477 (1994).

    Google Scholar 

  14. H. N. Joshi and T. D. Wilson. Calorimetric studies of dissolution of hydroxylpropyl methylcellulose E5 (HPMC E5) in water. J. Pharm. Sci. 82:1033–1038 (1993).

    Google Scholar 

  15. D. T. Turner and A. Schwartz. The glass transition temperature of poly(N-vinyl pyrrolidone) by differential scanning calorimetry. Polymer 26:757–762 (1985).

    Google Scholar 

  16. K. M. Picker. Hydrophile Matrixtabletten: Tablettierung und Freisetzung-unter besonderer Berücksichtigung der relativen Feuchte während der Herstellung. Doctoral Thesis. University of Hamburg (1995).

  17. T. G. Rials and W. G. Glasser. Thermal and dynamic mechanical properties of hydroxypropyl cellulose films. J. Appl. Polym. Sci. 36:749–758 (1988).

    Google Scholar 

  18. T. T. Kararli, J. B. Hurlbut, and T. E. Needham. Glass-rubber transitions of cellulosic polymers by dynamic mechanical analysis. J. Pharm. Sci. 79:845–848 (1990).

    Google Scholar 

  19. S. Suto, M. Kudo, and M. Karasawa. Static tensile and dynamic mechanical properties of hydroxypropylcellulose films prepared under various conditions. J. Appl. Polym. Sci. 31:1327–1341 (1986).

    Google Scholar 

  20. V. Davè, M. Tamagno, and B. Focher. Hyaluronic Acid-(Hydroxypropyl)cellulose blends: A solution and solid state study. Macromolecules 28:3531–3539 (1995).

    Google Scholar 

  21. P. Sakellariou, R. C. Rowe, and E. F. T. White. The thermoanalytical properties and glass transition temperatures of some cellulosic derivatives used in film coating. Int. J. Pharm. 27:267–277 (1996).

    Google Scholar 

  22. L. S. Taylor and G. Zografi. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures. J. Pharm. Sci. 87:1615–1621 (1998).

    Google Scholar 

  23. Methocel cellulose ethers handbook. Dow Chemical Company, Midland, MI (1997).

  24. C. Alvarez-Lorenzo, R. A. Lorenzo-Ferreira, J. L. Gó mez-Amoza, R. Martínez-Pacheco, C. Souto, and A. Concheiro. A comparison of gas-liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers. J. Pharm. Biomed. Anal. 20:373–383 (1999).

    Google Scholar 

  25. R. J. Samuels. Solid-state characterization of the structure and deformation behavior of water-soluble hydroxypropyl cellulose. J. Polym. Sci., Polym. A-2. 7:1197–1258 (1969).

    Google Scholar 

  26. Klucel. Hydroxypropylcellulose. Physical and chemical properties. Hercules Incorporated, Wilmington, DE (1997).

  27. S. Lau, J. Pathak, and B. Wunderlich. Study of phase separation in blends of polystyrene and poly(α-methylstyrene) in the glass transition region using quantitative thermal analysis. Macromolecules 15:1278–1283 (1982).

    Google Scholar 

  28. J. Roovers and P. M. Toporowski. Rheological study of miscible blends of 1,4-polybutadiene and 1,2-polybutadiene (63% 1,2). Macromolecules 25:1096–1102 (1992).

    Google Scholar 

  29. T. G. Fox. Influence of diluent and of copolymer composition on the glass transition temperature of a polymer system. Bull. Am. Phys. Soc. 1:123 (1956).

    Google Scholar 

  30. P. R. Couchman and F. E. Karasz. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11:117–119 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyamweya, N., Hoag, S.W. Assessment of Polymer-Polymer Interactions in Blends of HPMC and Film Forming Polymers by Modulated Temperature Differential Scanning Calorimetry. Pharm Res 17, 625–631 (2000). https://doi.org/10.1023/A:1007585403781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007585403781

Navigation