Skip to main content
Log in

Study on the behavior of elastic-plastic fracture under mixed I+II mode loading in aluminum alloy Ly12-J-integral analysis

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The elastic-plastic fracture behavior of aluminum alloy Ly12 under mixed I+II mode loading was studied by finite element method and fracture test. A mixed mode elastic-plastic fracture criterion of J-integral was proposed by using the J-resistance curve, and the maximum fracture effective plastic strain εp max of different mixed ratios at crack tip were also calculated. The results show that

(1) the initiation J-integral values of different mixed ratios have the equation

$$\left\{ \begin{gathered} J_{MC} = J_{Ii} + J_{{\text{II}}i} \hfill \\ J_{{\text{I}}i} /J_{{\text{I}}C} + J_{{\text{II}}i} /j_{{\text{II}}C} = 1, \hfill \\ \end{gathered} \right.$$

where J Ii and J IIi are the mode I and mode II components of the mixed initiation J-integral J MC at a constant ixed ratio, respectively;

(2) the relation between the J MC and mixed ratio K I/K II is

$$J_{MC} = K_{\text{I}}^{\text{2}} J_{{\text{I}}C} /(K_{\text{I}}^{\text{2}} + \alpha K_{{\text{II}}}^{\text{2}} ) + \alpha K_{{\text{II}}}^{\text{2}} ) + \alpha K_{{\text{II}}}^{\text{2}} J_{{\text{II}}C} /(K_{\text{I}}^{\text{2}} + \alpha K_{{\text{II}}}^{\text{2}} ),$$

α = J IC /J IIC ;

(3) J MC increases with an increasing of mode II component, J IIC is twice of J IC for Ly12; and

(4) the maximum fracture effective plastic strain ɛ p max and stress triaxiality σ m /σ of different mixed ratios at crack tip satisfy the formula of

$$\varepsilon _p {\text{ max exp(3}}\sigma _m {\text{/2}}\sigma {\text{)}} = {\text{constant, }}$$

where the constant is about 9.52 for Ly12. The relation with double parameters, ɛ p max and σm/σ, can be used as the local fracture or damage mechanics parameter under mixed mode I+II loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, S., Kishimoto, K. and Yoshida, T. (1987). A finite element study of the near crack tip deformation of a ductile material under mixed mode loading. Journal of Mechanics Physics Solids 35(4), 431–455.

    Google Scholar 

  • Aoki, S., Kishimoto, K. and Yoshida, T. (1990). Elastic-plastic fracture behavior of an aluminum alloy under mixed mode loading. Journal of Mechanics Physics Solids 38(2), 195–213.

    Google Scholar 

  • Bui, H.D. (1983). Associated path independent J-integrals for separating mixed modes. Journal of Mechanics and Physics Solids 31(6), 439–448.

    Google Scholar 

  • Cotterell, B., Lee, E. and Mai, Y.M. (1982). Mixed mode plane stress ductile fracture. International Journal of Fracture 20, 243–250.

    Google Scholar 

  • Erdogan, F. and Shih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear. Tran. ASME, Ser. D 85, 519–517.

    Google Scholar 

  • Gao, H., Wang, Z. and Yang, C. (1979). Brittle fracture of KI, KII mixed mode crack. Acta Metallurgica Sinica 15(3), 380–390 (in Chinese).

    Google Scholar 

  • Ishikawa, H. (1979). J-integral of a mixed mode crack and its application, In: Proc ICM3Cambridge, England, 3, 447–455.

    Google Scholar 

  • Kageyama, K. and Okamura, H. (1982). Elastic analysis of a bent crack with infinitesimal kink under tension and in-plane shear and maximum energy release rate criterion. Transaction JSME Ser.A48, 783–791 (in Japanese).

    Google Scholar 

  • Kamat, S.V. and Hirth, J.P. (1996). Mixed mode I/II fracture toughness of 2034 aluminum alloy. Acta Materialia 44(1), 201–208.

    Google Scholar 

  • Lee, D.J. and Donovan, J.A. (1987). Mixed mode I and II fracture of carbon black filled natural rubber. International Journal of Fracture 34, 41–55.

    Google Scholar 

  • McClintock, F.A. (1968). A criterion for ductile fracture by the growth of holes. Transaction ASME, Ser E35, 363–371.

    Google Scholar 

  • Otauka, A., Tohgo, K. and Okamoto, Y (1987). Relationship between ductile crack initiation and void volume fraction. Nuclear Engineering and Design 105, 121–129.

    Google Scholar 

  • Rice, J.R. (1968). A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanics 35(2), 379–386.

    Google Scholar 

  • Rice, J.R. and Tracey, D.M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of Mechanics Physics Solids 17, 201–217.

    Google Scholar 

  • Richard, H.A. and Benitz, K. (1983). A loading device for the creation of mixed mode in fracture mechanics. International Journal of Fracture 22, R55–58.

    Google Scholar 

  • Sha, J.B. (1994). Study on the Damage Fracture Mechanism and Criterion Under Mixed Mode Loading, PH.D dissertation of Xi'an Jiaotong University, Xi'an, China

  • Shi, Y.W., Zhou, N.N. and Zhang, J.X. (1994). Comparison ofmode I and mode II elastic-plastic fracture toughness for two low alloyed high strength steels. International Journal of Fracture 68, 89–97.

    Google Scholar 

  • Shih, C.F. (1974). Small scale yielding analysis of mixed mode plane strain crack problem. ASTM STP 560,187–210.

    Google Scholar 

  • Sih, G.C. (1974). Strain-energy-density factor applied to mixed crack problems. International Journal of Fracture 10, 305–321.

    Google Scholar 

  • Takamatsu, T. and Ichikawa, M. (1987). Mixed mode fracture criterion in a thin sheet of 2024-T3 Al-alloy. JSME, International Journal 30(265), 1035–1041.

    Google Scholar 

  • Tang, N.Y, Yao, K.F and Plumtree, A. (1992) Investigation of process zone structure in Fe-3Si alloy. Materials Science Technology 8(3), 245–251.

    Google Scholar 

  • Tohgo, K. and Ishii, H. (1992). Elastic-plastic fracture toughness test under mixed ICII loading. Engineering Fracture Mechanics 41(4), 529–540.

    Google Scholar 

  • Zhang, K.S., Hua, L.S. and Zheng, C.Q. (1987). A computer simulation of ductile fracture initiation in TPB specimen-an application of VGCcriterion. Proceeding of ICFFM, Shanghai, 216–219.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiangbo, S., Jun, S., Pin, Z. et al. Study on the behavior of elastic-plastic fracture under mixed I+II mode loading in aluminum alloy Ly12-J-integral analysis. International Journal of Fracture 102, 141–154 (2000). https://doi.org/10.1023/A:1007582207540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007582207540

Navigation