Skip to main content
Log in

Injectable Chemotherapeutic Microspheres and Glioma I: Enhanced Survival Following Implantation into the Cavity Wall of Debulked Tumors

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Implantation of biodegradable polymers provides a powerfulmethod to deliver high, sustained concentrations of chemotherapeuticsto brain tumors. The present studies examined the ability of injectablepolymeric microspheres, formulated to release carboplatin or BCNUfor 2–3 weeks, to enhance survival in a rodent model ofsurgically-resected glioma.

Methods. Rat glioma (RG2) cells were implanted into the cortex ofrats and allowed to grow for 10 days prior to surgical resection. Ratswere given either surgical resection only, bolus injection (100 μg) ormicrospheres containing 10, 50, or 100 μg of carboplatin or BCNU.The microspheres were implanted, via hypodermic injection, eitherdirectly into the surgical cavity or into the tissue along the perimeterof the cavity.

Results. The order of survival among treatment groups was: noresection < resection only < bolus chemotherapy < sustained releasechemotherapy. Carboplatin and BCNU did not differ in this respectand in each case, the enhanced survival achieved with sustained releasewas dose-related. However, the enhanced survival achieved withcarboplatin was substantially greater when the microspheres wereimplanted into the perimeter wall of the resection cavity, compared toimplantation into the cavity itself. The enhanced survival produced bycarboplatin implants along the resection perimeter was associated witha significant attenuation of regrowth of the tumor. Finally, in a separatestudy in non-tumor brain, atomic absorption spectrophotometryrevealed that while the microspheres produced significantly prolongedtissue levels of carboplatin relative to a bolus injection, carboplatindiffusion was limited to brain tissue extending primarily 0.5 mm fromthe injection site.

Conclusions. These data demonstrate: (1) that sustained delivery ofchemotherapy is superior to equipotent bolus doses following tumorresection, and (2) that direct injection of sustained release microspheresinto the tissue surrounding a growing tumor mass may provide superioreffects over injections into the surgical cavity. They also suggest thatsuccessful implementation of this approach in humans may requiremeasures or circumstances that improve upon the limited spatial drugdiffusion from the implantation site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Black. Brain tumors, part I. N. Engl. J. Med. 324:1471–1476 (1991).

    Google Scholar 

  2. R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B. Jang, M. Chasin, and H. Brem. Interstitial chemotherapy of the 9L gliosarcoma:controlled release polymers for drug delivery to the brain. Cancer Res. 53:329–333 (1993).

    Google Scholar 

  3. K. A. Walter, M. A. Cahan, A. Gur, B. Tyler, J. Hilton, O. M. Colvin, P. C. Burger, A. Domb, and H. Brem. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54:2207–2212 (1994).

    Google Scholar 

  4. K. O. Lillehei, Q. Kong, S. J. Withrow, and B. Kleinschmidt-DeMasters. Efficacy of intralesionally administered cisplatin-impregnated biodegradable polymer for the treatment of 9L gliosarcoma in the rat. Neurosurgery 39:1191–1197 (1996).

    Google Scholar 

  5. P. Menie, M. Boisdron-Celler, A. Croue, G. Guy and J-P. Benoit. Effect of stereotactic implantation of biodegradable 5-Fluoroacil-loaded microspheres in healthy and C6 glioma-bearing rats. Neurosurgery 39:117–123 (1996).

    Google Scholar 

  6. A. Olivi, M. G. Ewend, T. Utsuki, B. Tyler, A. J. Domb, D. J. Brat, and H. Brem. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother. Pharmacol. 39:90–96 (1996).

    Google Scholar 

  7. H. Brem, M. G. Ewend, S. Piantadosi, J. Greehoot, P. C. Burger, and M. Sisti. The safety of interstitial chemotherapy with BCNU loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J. Neuro-oncol. 26:111–123 (1995).

    Google Scholar 

  8. H. Brem, S. Piantadosi, P. C. Burger, M. Walker, R. Selker, N. A. Vick, K. L. Black, M. Sisti, S. Brem, G. Mohr, P. Muller, R. Morawetz, and R. Schold. Placebo-controlled trials of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345:1008–1012 (1995).

    Google Scholar 

  9. K. A. Walter, R. J. Tamargo, A. Olivi, P. C. Burger, and H. Brem. Intratumoral chemotherapy. Neurosurgery 37:1129–1145 (1995).

    Google Scholar 

  10. F. H. Hochberg and A. Pruitt. Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911 (1980).

    Google Scholar 

  11. O. Ike, Y. Shimizu, R. Wada, S-H. Hyon, and Y. Ikada. Controlled cisplatin delivery system using poly(DL-lactic acid). Biomaterials 13:230–234 (1992).

    Google Scholar 

  12. M. Boisdron-Celle, P. Menei, and J. P. Benoit. Preparation and characterization of 5-Fluorocil-loaded microparticles as biodegradable anticancer drug carriers. J. Pharm. Pharmacol. 47:108–114 (1995).

    Google Scholar 

  13. P. Menie, M.-C. Venier, E. Gamelin, J.-P. Saint-Andre, G. Hayek, E. Jadaud, D. Fournier, P. Mercer, G. Guy and J.-P. Benoit. Local and sustained delivery of 5-Fluoracil from biodegradable microspheres for the radiosensitization of glioblastoma. Cancer 86:325–330 (1999).

    Google Scholar 

  14. D. F. Emerich, M. A. Tracy, K. L. Ward, M. Figueredo, R. Qian, C. Henschell, and R. T. Bartus. Biocompatibility of Poly (DL-Lactide-co-Glycolide) microspheres implanted into the brain. Cell Transpl. 8:47–58 (1999).

    Google Scholar 

  15. D. F. Emerich, P. Snodgrass, R. Dean, M. Agostino, B. Hasler, M. Pink, H. Xiong, B. S. Kim, and R. T. Bartus. Enhanced delivery of carboplatin into brain tumors with intraveneous Cereport (RMP-7): dramatic differences and insight ganed from dosing parameters. Brit. J. Cancer 80:964–970 (1999).

    Google Scholar 

  16. G. Paxinos and C. Watson. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney, 1986.

    Google Scholar 

  17. A. C. Bratton and E. K. Marshall, Jr. A new coupling component for sulfanilamide determination. J. Biol. Chem. 128:537–550 (1939).

    Google Scholar 

  18. T. L. Loo and R. L. Dion. Colorimetric method for the determination of 1,3-bis(2-chloroethyl)-1-nitrosourea. J. Pharm. Sci. 54:809–810 (1965).

    Google Scholar 

  19. R. T. Bartus, P. Snodgrass, J. Marsh, M. Agostino, A. Perkins and D. F. Emerich. Intravenous Cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels and enhances survival. J. Pharmacol. Exp. Ther. (in press).

  20. T. L. Loo, R. L. Dion, R. L. Dixon, and D. P. Rall. The antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea. J. Pharm. Sci. 55:494–497 (1966).

    Google Scholar 

  21. K. G. Buahin and H. Brem. Interstitial chemotherapy of experimental brain tumors: comparison of intratumoral injection versus polymeric controlled release. J. Neuro-oncol. 26:103–110 (1995).

    Google Scholar 

  22. M. Mak, L. Fung, J. F. Strasser, and W. M. Saltzman. Distribution of drugs following controlled delivery to the brain interstitium. J. Neuro-oncol. 26:91–102 (1995).

    Google Scholar 

  23. S. S. Prabhu, W. C. Broaddus, G. T. Gillies, W. G. Loudon, Z.-J. Chen, and B. Smith. Distribution of macromolecular dyes in brain using positive pressure infusion: A model for direct controlled delivery of therapeutic agents. Surg. Neurol. 50:367–375 (1998).

    Google Scholar 

  24. M. J. Mahoney and W. M. Saltzman. Millimeter-scale positoning of a nerve-growth-factor source and biological activity in the brain. Proc. Natl. Acad. Sci. USA 96:4536–4539 (1999).

    Google Scholar 

  25. H. F. Cserr and L. H. Ostrach. Bulk flow of interstitial fluid after intracranial injection of blue dextran 200. Exper. Neurol. 45:50–60 (1974).

    Google Scholar 

  26. C. P. Geer and S. A. Grossman. Interstitial fluid flow along white matter tracts: A potentially important mechanism for the dissemination of primary brain tumors. J. Neuro-oncol. 32:193–201 (1997).

    Google Scholar 

  27. C. Nicholson. Signals that go with the flow. TINS 22:143–145 (1999).

    Google Scholar 

  28. P. C. Burger, P. J. Dubois, S. C, Schold, K.R. Smith, G. L. Odom, and D. C. Crafts. Computerized tomographic and pathologic studies of untreated, quiescent, and recurrent glioblastoma multiforme. J. Neurosurg. 58:159–169 (1983).

    Google Scholar 

  29. M. Rosenblum, A. Eisenberg, and D. Norman. Brain tumor invasion: clinical patterns of malignant astrocytoma spread. Proc. Am. Soc. Clin. Oncol. 11:148 (1992).

    Google Scholar 

  30. B. A. Wie, S. A. Grossman, M. D. Wharam, and M. Chun. Dissemination of high grade astrocytomas along white matter tracts: Observations and therapeutic implications. Proc. Am. Soc. Clin. Oncol. 12:177 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerich, D.F., Winn, S.R., Hu, Y. et al. Injectable Chemotherapeutic Microspheres and Glioma I: Enhanced Survival Following Implantation into the Cavity Wall of Debulked Tumors. Pharm Res 17, 767–775 (2000). https://doi.org/10.1023/A:1007576405039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007576405039

Navigation