Skip to main content

Neurosurgical Implant-Based Strategy for Brain Cancer Therapy

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Part of the book series: Neuromethods ((NM,volume 163))

Abstract

Glioblastoma has long proven to be a challenging disease in regard to chemotherapeutic delivery as it grows within a privileged site protected by the selective blood-brain barrier. For many years biodegradable polymers were investigated as potential drug delivery systems. However, polymer technology in the drug delivery setting only truly advanced after the polyanhydrides were tested and demonstrated to be safe and effective platforms for controlled delivery of hydrolytically unstable chemotherapeutics. An in-depth series of biochemical and preclinical studies laid the foundation for the translation of these findings into clinical use for the treatment of glioblastoma with carmustine. This chapter provides the historical perspective of the carmustine implants through preclinical safety, intracranial distribution, and efficacy studies to clinical trials in recurrent and newly diagnosed glioblastoma and subsequent FDA approval of this chemotherapeutic delivery concept. Moreover, these studies provide a successful framework on which to expand in this new era of targeted and controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ostrom QT et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology 16(7):896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Furnari FB et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710. https://doi.org/10.1101/gad.1596707

    Article  CAS  PubMed  Google Scholar 

  4. Weller M et al (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379. https://doi.org/10.1016/S1470-2045(13)70168-2

    Article  CAS  PubMed  Google Scholar 

  5. Liu A et al (2016) Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol 6:16. https://doi.org/10.3389/fonc.2016.00016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gruber ML, Hochberg FH (1990) Systematic evaluation of primary brain tumors. J Nucl Med 31(6):969–971

    CAS  PubMed  Google Scholar 

  7. Groothuis DR et al (1982) Permeability of different experimental brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41(2):164–185

    Article  CAS  PubMed  Google Scholar 

  8. Neuwelt EA et al (1982) Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A 79(14):4420–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banks WA (2009) Characteristics of compounds that cross the blood-brain barrier. BMC Neurol 9(Suppl 1):S3. https://doi.org/10.1186/1471-2377-9-S1-S3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  11. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith QR et al (1988) Kinetics and distribution volumes for tracers of different sizes in the brain plasma space. Brain Res 462(1):1–9

    Article  CAS  PubMed  Google Scholar 

  13. Pollay M, Roberts PA (1980) Blood-brain barrier: a definition of normal and altered function. Neurosurgery 6(6):675–685

    Article  CAS  PubMed  Google Scholar 

  14. Avsenik J, Bisdas S, Popovic KS (2015) Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 49(2):107–114. https://doi.org/10.2478/raon-2014-0029

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  16. Chaichana KL, Pinheiro L, Brem H (2015) Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 6(3):353–369. https://doi.org/10.4155/tde.14.114

    Article  CAS  PubMed  Google Scholar 

  17. Heller J, Baker R (1980) Theory and practice of controlled drug delivery from bioerodible polymers. In: Controlled release of bioactive materials. Elsevier, Amsterdam, pp 1–17

    Google Scholar 

  18. Pitt G et al (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 2(4):215–220

    Article  CAS  PubMed  Google Scholar 

  19. Conix A (1958) Aromatic polyanhydrides, a new class of high melting fiber-forming polymers. J Polym Sci A Polym Chem 29(120):343–353

    CAS  Google Scholar 

  20. Rosen HB et al (1983) Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4(2):131–133

    Article  CAS  PubMed  Google Scholar 

  21. Chasin M et al (1990) Polyanhydrides as drug delivery systems. Biodegrad Poly Drug Deliv Syst 45:43–70

    CAS  Google Scholar 

  22. Domb A, Langer R (1987) Polyanhydrides. I. Preparation of high molecular weight polyanhydrides. J Polym Sci A Polym Chem 25(12):3373–3386

    Article  CAS  Google Scholar 

  23. Leong K, Brott B, Langer R (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res A 19(8):941–955

    Article  CAS  Google Scholar 

  24. Leong K et al (1986) Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res A 20(1):51–64

    Article  CAS  Google Scholar 

  25. Mathiowitz E, Langer R (1987) Polyanhydride microspheres as drug carriers I. hot-melt microencapsulation. J Control Release 5(1):13–22

    Article  CAS  Google Scholar 

  26. Langer R, Brem H, Tapper D (1981) Biocompatibility of polymeric delivery systems for macromolecules. J Biomed Mater Res A 15(2):267–277

    Article  CAS  Google Scholar 

  27. Tamargo RJ et al (1989) Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res A 23(2):253–266

    Article  CAS  Google Scholar 

  28. Brem H et al (1989) Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 5(2):55–65

    Article  CAS  PubMed  Google Scholar 

  29. Steen RG et al (1988) In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1, 3-bis (2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Cancer Res 48(3):676–681

    CAS  PubMed  Google Scholar 

  30. Grant Steen R et al (1989) In vivo31P nuclear magnetic resonance spectroscopy of rat 9l gliosarcoma treated with BCNU: dose response of spectral changes. Magn Reson Med 11(2):258–266

    Article  Google Scholar 

  31. Yang MB, Tamargo RJ, Brem H (1989) Controlled delivery of 1, 3-bis (2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res 49(18):5103–5107

    CAS  PubMed  Google Scholar 

  32. Domb A et al (1991) Controlled delivery of water soluble and hydrolytically unstable anti-cancer drugs for polymeric implants. Polym Prepr 32(2):219–220

    CAS  Google Scholar 

  33. Grossman SA et al (1992) The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 76(4):640–647

    Article  CAS  PubMed  Google Scholar 

  34. Tamargo RJ et al (1993) Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res 53(2):329–333

    CAS  PubMed  Google Scholar 

  35. Brem H et al (1991) Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74(3):441–446. https://doi.org/10.3171/jns.1991.74.3.0441

    Article  CAS  PubMed  Google Scholar 

  36. Brem H et al (1994) Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 80(2):283–290

    Article  CAS  PubMed  Google Scholar 

  37. Wu MP et al (1994) In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy. J Biomed Mater Res A 28(3):387–395

    Article  CAS  Google Scholar 

  38. Fung LK et al (1996) Chemotherapeutic drugs released from polymers: distribution of 1, 3-bis (2-chloroethyl)-l-nitrosourea in the rat brain. Pharm Res 13(5):671–682

    Article  CAS  PubMed  Google Scholar 

  39. Fung LK et al (1998) Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 58(4):672–684

    CAS  PubMed  Google Scholar 

  40. Dang W, Daviau T, Brem H (1996) Morphological characterization of polyanhydride biodegradable implant Gliadel® during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 13(5):683–691

    Article  CAS  PubMed  Google Scholar 

  41. Sipos EP et al (1997) Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 39(5):383–389

    Article  CAS  PubMed  Google Scholar 

  42. Ewend M et al. (2019) Local delivery of BCNU from biodegradable polymer is superior to radiation therapy in treating intracranial melanoma metastases. In: SURGICAL FORUM-CHICAGO-. pp. 564–565

    Google Scholar 

  43. Ewend MG et al (1996) Local delivery of chemotherapy and concurrent external beam radiotherapy prolongs survival in metastatic brain tumor models. Cancer Res 56(22):5217–5223

    CAS  PubMed  Google Scholar 

  44. Brem H (1990) Polymers to treat brain tumours. Biomaterials 11(9):699–701

    Article  CAS  PubMed  Google Scholar 

  45. Brem H, Langer R (1996) Polymer-based drug delivery to the brain. Sci Med 3:52–61

    CAS  Google Scholar 

  46. Brem H et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345(8956):1008–1012

    Article  CAS  PubMed  Google Scholar 

  47. Drapeau A, Fortin D (2015) Chemotherapy delivery strategies to the central nervous system: neither optional nor superfluous. Curr Cancer Drug Targets 15(9):752–768

    Article  CAS  PubMed  Google Scholar 

  48. Brem H et al (1995) The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neuro-Oncol 26(2):111–123

    Article  CAS  Google Scholar 

  49. Valtonen S et al (1997) Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41(1):44–49

    Article  CAS  PubMed  Google Scholar 

  50. Westphal M et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5(2):79–88. https://doi.org/10.1093/neuonc/5.2.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Menei P et al (2010) Biodegradable carmustine wafers (Gliadel) alone or in combination with chemoradiotherapy: the French experience. Ann Surg Oncol 17(7):1740–1746. https://doi.org/10.1245/s10434-010-1081-5

    Article  PubMed  Google Scholar 

  52. Hart MG et al (2011) Chemotherapy wafers for high grade glioma. Cochrane Database Syst Rev 3:CD007294. https://doi.org/10.1002/14651858.CD007294.pub2

    Article  Google Scholar 

  53. Aoki T et al (2014) A multicenter phase I/II study of the BCNU implant (Gliadel((R)) wafer) for Japanese patients with malignant gliomas. Neurol Med Chir (Tokyo) 54(4):290–301

    Article  Google Scholar 

  54. McGirt MJ et al (2009) Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg 110(3):583–588. https://doi.org/10.3171/2008.5.17557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGirt MJ, Brem H (2010) Carmustine wafers (Gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Ann Surg Oncol 17(7):1729–1731. https://doi.org/10.1245/s10434-010-1092-2

    Article  PubMed  Google Scholar 

  56. Gururangan S et al (2001) Phase I study of Gliadel wafers plus temozolomide in adults with recurrent supratentorial high-grade gliomas. Neuro-Oncology 3(4):246–250. https://doi.org/10.1093/neuonc/3.4.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salmaggi A et al (2013) Prospective study of carmustine wafers in combination with 6-month metronomic temozolomide and radiation therapy in newly diagnosed glioblastoma: preliminary results. J Neurosurg 118(4):821–829. https://doi.org/10.3171/2012.12.JNS111893

    Article  CAS  PubMed  Google Scholar 

  58. Pan E, Mitchell SB, Tsai JS (2008) A retrospective study of the safety of BCNU wafers with concurrent temozolomide and radiotherapy and adjuvant temozolomide for newly diagnosed glioblastoma patients. J Neuro-Oncol 88(3):353–357. https://doi.org/10.1007/s11060-008-9576-7

    Article  Google Scholar 

  59. Bock HC et al (2010) First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience. Neurosurg Rev 33(4):441–449. https://doi.org/10.1007/s10143-010-0280-7

    Article  PubMed  PubMed Central  Google Scholar 

  60. Salmaggi A et al (2011) Loco-regional treatments in first-diagnosis glioblastoma: literature review on association between Stupp protocol and Gliadel. Neurol Sci 32(Suppl 2):S241–S245. https://doi.org/10.1007/s10072-011-0797-8

    Article  PubMed  Google Scholar 

  61. Miglierini P et al (2012) Impact of the per-operatory application of GLIADEL wafers (BCNU, carmustine) in combination with temozolomide and radiotherapy in patients with glioblastoma multiforme: efficacy and toxicity. Clin Neurol Neurosurg 114(9):1222–1225. https://doi.org/10.1016/j.clineuro.2012.02.056

    Article  PubMed  Google Scholar 

  62. Ashby LS, Smith KA, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225. https://doi.org/10.1186/s12957-016-0975-5

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chaichana KL et al (2011) The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res 33(7):759–764. https://doi.org/10.1179/1743132811Y.0000000006

    Article  PubMed  PubMed Central  Google Scholar 

  64. Milojkovic Kerklaan B et al (2016) Strategies to target drugs to gliomas and CNS metastases of solid tumors. J Neurol 263(3):428–440. https://doi.org/10.1007/s00415-015-7919-9

    Article  CAS  PubMed  Google Scholar 

  65. Ewend MG et al (1998) Local delivery of chemotherapy prolongs survival in experimental brain metastases from breast carcinoma. Neurosurgery 43(5):1185–1193

    Article  CAS  PubMed  Google Scholar 

  66. Ewend MG et al (2007) Treatment of single brain metastasis with resection, intracavity carmustine polymer wafers, and radiation therapy is safe and provides excellent local control. Clin Cancer Res 13(12):3637–3641. https://doi.org/10.1158/1078-0432.CCR-06-2095

    Article  CAS  PubMed  Google Scholar 

  67. Mu F et al (2015) Tumor resection with carmustine wafer placement as salvage therapy after local failure of radiosurgery for brain metastasis. J Clin Neurosci 22(3):561–565. https://doi.org/10.1016/j.jocn.2014.08.020

    Article  CAS  PubMed  Google Scholar 

  68. Ene CI et al (2016) Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surg Neurol Int 7(Suppl 11):S295–S299. https://doi.org/10.4103/2152-7806.181987

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brem S et al (2013) Preservation of neurocognitive function and local control of 1 to 3 brain metastases treated with surgery and carmustine wafers. Cancer 119(21):3830–3838. https://doi.org/10.1002/cncr.28307

    Article  PubMed  Google Scholar 

  70. Abel TJ et al (2013) Gliadel for brain metastasis. Surg Neurol Int 4(Suppl 4):S289–S293. https://doi.org/10.4103/2152-7806.111305

    Article  PubMed  PubMed Central  Google Scholar 

  71. Olivi A et al (2003) Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a new approaches to brain tumor therapy CNS consortium trial. J Clin Oncol 21(9):1845–1849. https://doi.org/10.1200/JCO.2003.09.041

    Article  CAS  PubMed  Google Scholar 

  72. Xing WK et al (2015) The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis. Drug Des Devel Ther 9:3341–3348. https://doi.org/10.2147/DDDT.S85943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chowdhary SA, Ryken T, Newton HB (2015) Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neuro-Oncol 122(2):367–382. https://doi.org/10.1007/s11060-015-1724-2

    Article  Google Scholar 

  74. Attenello FJ et al (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893. https://doi.org/10.1245/s10434-008-0048-2

    Article  PubMed  Google Scholar 

  75. Perry J et al (2007) Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 14(5):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang YD et al (2014) Efficacy and safety of carmustine wafers in the treatment of glioblastoma multiforme: a systematic review. Turk Neurosurg 24(5):639–645. https://doi.org/10.5137/1019-5149.JTN.8878-13.1

    Article  PubMed  Google Scholar 

  77. Kleinberg L (2012) Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for role in era of standard adjuvant temozolomide. Core Evid 7:115–130. https://doi.org/10.2147/CE.S23244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woodworth GF et al (2014) Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 4:126. https://doi.org/10.3389/fonc.2014.00126

    Article  PubMed  PubMed Central  Google Scholar 

  79. Olivi A et al (1996) Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother Pharmacol 39(1-2):90–96

    Article  CAS  PubMed  Google Scholar 

  80. Brem S et al (2007) Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother Pharmacol 60(5):643–650. https://doi.org/10.1007/s00280-006-0407-2

    Article  CAS  PubMed  Google Scholar 

  81. Mangraviti A et al (2017) HIF-1alpha- targeting Acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci Rep 7(1):14978. https://doi.org/10.1038/s41598-017-14990-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin SH, Kleinberg LR (2008) Carmustine wafers: localized delivery of chemotherapeutic agents in CNS malignancies. Expert Rev Anticancer Ther 8(3):343–359. https://doi.org/10.1586/14737140.8.3.343

    Article  CAS  PubMed  Google Scholar 

  83. Mathios D et al (2016) Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med 8(370):370ra180. https://doi.org/10.1126/scitranslmed.aag2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blanchette M, Fortin D (2011) Blood-brain barrier disruption in the treatment of brain tumors. In: The Blood-Brain and Other Neural Barriers. Springer, New York, pp 447–463

    Chapter  Google Scholar 

  85. Jackson S et al (2016) The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J Neuro-Oncol 126(3):433–439

    Article  CAS  Google Scholar 

  86. Marty B et al (2012) Dynamic study of blood–brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 32(10):1948–1958

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jackson S et al (2018) The effect of an adenosine A 2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chakraborty S et al (2016) Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neuro-Oncol 128(3):405–415

    Article  CAS  Google Scholar 

  89. Carpentier A et al (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8(343):343re342

    Article  CAS  Google Scholar 

  90. Raghavan R et al (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4):E12. https://doi.org/10.3171/foc.2006.20.4.7

    Article  PubMed  Google Scholar 

  91. Mangraviti A, Tyler B, Brem H (2015) Interstitial chemotherapy for malignant glioma: future prospects in the era of multimodal therapy. Surg Neurol Int 6(Suppl 1):S78–S84. https://doi.org/10.4103/2152-7806.151345

    Article  PubMed  PubMed Central  Google Scholar 

  92. Richards Grayson AC et al (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2(11):767–772

    Article  PubMed  Google Scholar 

  93. Kim GY et al (2007) Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. J Control Release 123(2):172–178. https://doi.org/10.1016/j.jconrel.2007.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Masi BC et al (2012) Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials 33(23):5768–5775. https://doi.org/10.1016/j.biomaterials.2012.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farra R et al (2012) First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4(122):122ra121. https://doi.org/10.1126/scitranslmed.3003276

    Article  CAS  Google Scholar 

  96. Zhang Z et al (2018) Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations. Drug Deliv 25(1):166–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang Y-H et al (2011) Temozolomide/PLGA microparticles: a new protocol for treatment of glioma in rats. Med Oncol 28(3):901–906

    Article  CAS  PubMed  Google Scholar 

  98. Zhu T et al (2014) BCNU/PLGA microspheres: a promising strategy for the treatment of gliomas in mice. Chin J Cancer Res 26(1):81

    PubMed  PubMed Central  Google Scholar 

  99. Allhenn D et al (2013) A “drug cocktail” delivered by microspheres for the local treatment of rat glioblastoma. J Microencapsul 30(7):667–673

    Article  CAS  PubMed  Google Scholar 

  100. Zhang D et al (2012) The effect of temozolomide/poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite microspheres on glioma U87 cells behavior. Int J Mol Sci 13(1):1109–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ozeki T et al (2012) Combination therapy of surgical tumor resection with implantation of a hydrogel containing camptothecin-loaded poly (lactic-co-glycolic acid) microspheres in a C6 rat glioma model. Biol Pharm Bull 35(4):545–550

    Article  CAS  PubMed  Google Scholar 

  102. Mangraviti A et al (2015) Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 9(2):1236–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Menei P et al (2005) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56(2):242–248

    Article  PubMed  Google Scholar 

  104. Wei X et al (2015) Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J Control Release 218:13–21

    Article  CAS  PubMed  Google Scholar 

  105. P-j Y et al (2014) OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer 13(1):191

    Article  CAS  Google Scholar 

  106. Chastagner P et al (2015) Phase I study of non-pegylated liposomal doxorubicin in children with recurrent/refractory high-grade glioma. Cancer Chemother Pharmacol 76(2):425–432

    Article  CAS  PubMed  Google Scholar 

  107. Clarke JL et al (2017) A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother Pharmacol 79(3):603–610

    Article  CAS  PubMed  Google Scholar 

  108. Zhao M et al (2018) Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int J Nanomedicine 13:1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen X et al (2016) Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma. Curr Pharm Biotechnol 17(7):636–650

    Article  CAS  PubMed  Google Scholar 

  110. Voges J et al (2003) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54(4):479–487

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Casaos, J., Gorelick, N., Tyler, B. (2021). Neurosurgical Implant-Based Strategy for Brain Cancer Therapy. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics