Skip to main content
Log in

Strain Rates and Material Spins

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The material time rate of Lagrangean strain measures, objective corotational rates of Eulerian strain measures and their defining spin tensors are investigated from a general point of view. First, a direct and rigorous method is used to derive a simple formula for the gradient of the tensor-valued function defining a general class of strain measures. By means of this formula and the chain rule as well as Sylvester's formula for eigenprojections, explicit basis-free expressions for the material time rate of an arbitrary Lagrangean strain measure can be derived in terms of the right Cauchy–Green tensor and the material time rate of any chosen Lagrangean strain measure, e.g. Hencky's logarithmic strain measure. These results provide a new derivation of Carlson–Hoger's general gradient formula for an arbitrary generalized strain measure and supply a new, rigorous proof for Carlson–Hoger's conjecture concerning the n-dimensional case. Next, by virtue of the aforementioned gradient formula, a general fact for objective corotational rates and their defining spin tensors is disclosed: Let Ω = ϒ ( B, D, W) be any spin tensor that is continuous with respect to B, where B, D and B are the left Cauchy–Green tensor, the stretching tensor and the vorticity tensor. Then the corotational rate of an Eulerian strain measure defined by Ω is objective iff Ω = W + υ ( B, D), where Υ is isotropic. By means of this fact and certain necessary or reasonable requirements, it is further found that a single antisymmetric function of two positive real variables can be introduced to characterize a general class of spin tensors defining objective corotational rates. A general basis- free expression for all such spin tensors and accordingly a general basis-free expression for a general class of objective corotational rates of an arbitrary Eulerian strain measure are established in terms of the left Cauchy–Green tensor B and the stretching tensor B as well as the introduced antisymmetric function. By choosing several particular forms of the latter, all commonly-known spin tensors and corresponding corotational rates are shown to be incorporated into these general formulas in a natural way. In particular, with the aid of these general formulae it is proved that an objective corotational rate of the Eulerian logarithmic strain measure ln V is identical with the stretching tensor D and moreover that in all possible strain tensor measures only ln V enjoys this property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hill, On constitutive inequalitites for simple materials-I, J. Mech. Phys. Solids 16(1968) 229-242.

    Article  MATH  ADS  Google Scholar 

  2. R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain, Proc. R. Soc. London A326(1970) 131-147.

    ADS  Google Scholar 

  3. R. Hill, Aspects of invariance in solid mechanics, Advances in Applied Mechanics 18(1978) 1-75.

    MATH  Google Scholar 

  4. C. Truesdell and R. Toupin, The Classical Field Theories. In: S. Flügge (ed.), Handbuch der PhysikVol. III/1, pp. 226-858, Berlin, Göttingen, Heidelberg: Springer-Verlag (1960).

    Google Scholar 

  5. C.C. Wang and C. Truesdell, Introduction to Rational Elasticity, Leyden: Noordhoff (1973).

    MATH  Google Scholar 

  6. R.W. Ogden, Non-Linear Elastic Deformations, Chichester: Ellis Horwood (1984).

    Google Scholar 

  7. M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media.Berlin, Heidelberg, New York: Springer-Verlag (1997).

    MATH  Google Scholar 

  8. M.E. Gurtin, An Introduction to Continuum Mechanics.New York: Academic Press (1981).

    MATH  Google Scholar 

  9. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity.Englewood Cliffs, New Jersey: Prentice-Hall (1983).

    MATH  Google Scholar 

  10. T.C. Doyle and J.L. Ericksen, Nonlinear elasticity, Advances in Applied Mechanics 4(1956) 53-115.

    MathSciNet  Google Scholar 

  11. B.R. Seth, Generalized strain measures with applications to physical problems. In: M. Reiner and D. Abir (eds), Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics.Oxford: Pergamon Press (1964) pp. 162-172.

    Google Scholar 

  12. H. Hencky, Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Z. Techn. Phys. 9(1928) 214-247.

    Google Scholar 

  13. S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation, Bull. Intl. Acad. Sci. Cracovie, pp. 594-614 (1903).

  14. G. Jaumann, Geshlossenes System physikalischer und chemischer Differenzialgesetze, Sitzber. Acad. Wiss. Wien (IIa) 120(1911) 385-530.

  15. A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Rat.Mech. Anal. 18(1965) 251-281.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.K. Dienes, On the analysis of rotation and stress rate in deforming bodies, Acta Mechanica 32(1979) 217-232.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.K. Dienes, A discussion of material rotation and stress rate, Acta Mechanica 65(1987) 1-11.

    Article  MATH  Google Scholar 

  18. D.R. Metzger and R.N. Dubey, Corotational rates in constitutive modelling of elastic-plastic deformation, Int. J. Plasticity 4(1987) 341-368.

    Article  Google Scholar 

  19. M. Scheidler, The tensor equation AX+ XA= Φ( A ; H ), with applications to kinematics of continua, J. Elasticity 36(1994) 117-153.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.E. Gurtin and K. Spear, On the relationship between the logarithmic strain rate and the stretching tensor, Int. J. Solids Structures 19(1983) 437-444.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.N. Dubey, Choice of tensor-rates-a methodology, SM Archives 12(1987) 233-244.

    MATH  MathSciNet  Google Scholar 

  22. J.G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London A200(1950) 523-541.

    MathSciNet  ADS  Google Scholar 

  23. B.A. Cotter and R.S. Rivlin, Tensors associated with time-dependent stress, Quart. Appl. Math. 13(1955) 177-182.

    MATH  MathSciNet  Google Scholar 

  24. C. Truesdell, Hypo-elasticity, J. Rat. Mech. Anal. 4(1955) 83-133.

    MATH  MathSciNet  Google Scholar 

  25. W. Noll, On the continuity of the solid and fluid state, J. Rat. Mech. Anal. 4(1955) 3-81.

    MATH  MathSciNet  Google Scholar 

  26. T.Y. Thomas, On the structure of stress-strain relation, Proc. Nat. Acad. Sci. U.S.A. 41(1955) 716-720.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. W. Prager, An elementary discussion of definitions of stress rate, Quart. Appl. Math. 18(1960) 403-407.

    MathSciNet  Google Scholar 

  28. Y.F. Dafalias, Corotational rates for kinematical hardening at large plastic deformations, ASME J. Appl. Mech. 50(1983) 561-565.

    Article  MATH  Google Scholar 

  29. J. Stickforth and K. Wegener, A note on Dienes' and Aifantis' co-rotational derivatives, Acta Mechanica 74(1988) 227-234.

    Article  MATH  Google Scholar 

  30. L. Szabó and M. Balla, Comparison of some stress rates, Int. J. Solids Structures 25(1989) 279-297.

    Article  Google Scholar 

  31. W. Yang, L. Cheng and K.C. Hwang, Objective corotational rates and shear oscillations, Int. J. Plasticity 8(1992) 643-656.

    Article  MATH  Google Scholar 

  32. S. Nemat-Nasser, On finite deformation elasto-plasticity, Int. J. Solids Structures 18(1982) 857-872.

    Article  MATH  Google Scholar 

  33. Z.H. Guo and R.N. Dubey, Basic aspects of Hill's method in solid mechanics, SM Archives 9(1984) 353-380.

    MATH  Google Scholar 

  34. M. Scheidler, Time rates of generalized strain tensors, Part I: Component formulas, Mech. Mater. 11(1991) 199-210.

    Article  Google Scholar 

  35. M. Scheidler, Time rates of generalized strain tensors, Part II: Approximate basis-free formulas. Mech. Mater. 11(1991) 211-219.

    Article  Google Scholar 

  36. Z.H. Guo, Rates of stretch tensors, J. Elasticity 14(1984) 263-267.

    MATH  MathSciNet  Google Scholar 

  37. A. Hoger and D.E. Carlson, On the derivative of the square root of a tensor and Guo's rate theorem, J. Elasticity 14(1984) 329-336.

    MATH  MathSciNet  Google Scholar 

  38. M.M. Mehrabadi and S. Nemat-Nasser, Some basic kinematical relations for finite deformations of continua, Mech. Mater. 6(1987) 127-138.

    Article  Google Scholar 

  39. Z.H. Guo, Th. Lehmann and H.Y. Liang, Further remarks on rates of stretch tensors, Trans. CSME 15(1991) 161-172.

    Google Scholar 

  40. Th. Lehmann, Z.H. Guo and H.Y. Liang, The conjugacy between Cauchy stress and logarithm of the left stretch tensor, Eur. J. Mech., A/Solids 10(1991) 395-404.

    MATH  MathSciNet  Google Scholar 

  41. Th. Lehmann and H. Y. Liang, The stress conjugate to logarithmic strain ln V, Zeits. Angew. Math. Mech. 73(1993) 357-363.

    MATH  MathSciNet  Google Scholar 

  42. L. Wheeler, On the derivatives of the stretch and rotation with respect to the deformation gradient, J. Elasticity 24(1990) 129-133.

    Article  MATH  MathSciNet  Google Scholar 

  43. Y.C. Chen and L. Wheeler, Derivatives of the stretch and rotation tensors, J. Elasticity 32(1993) 175-185.

    Article  MATH  MathSciNet  Google Scholar 

  44. W.D. Reinhardt and R.N. Dubey, Eulerian strain-rate as a rate of logarithmic strain, Mech. Res. Commun. 22(1995) 165-170.

    Article  MATH  Google Scholar 

  45. W.D. Reinhardt and R. N. Dubey, Coordinate-independent representation of spins in continuum mechanics, J. Elasticity 42(1996) 133-144.

    Article  MATH  MathSciNet  Google Scholar 

  46. J. E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite deformation, J. Appl. Phy. 51(1980) 5111-5115.

    Article  ADS  Google Scholar 

  47. A. Hoger, The material time derivative of logarithmic strain tensor, Int. J. Solids Struct. 22(1986) 1019-1032.

    Article  MATH  MathSciNet  Google Scholar 

  48. D.E. Carlson and A. Hoger, The derivative of a tensor-valued function of a tensor, Q. Appl. Math. 44(1986) 409-423.

    MATH  MathSciNet  Google Scholar 

  49. M. Scheidler, Time rates of generalized strain tensors with applications to elasticity. In: S.C. Chou (ed.), Proc. 12th Army Symp. on Solid Mechanics (1992) pp. 59-71.

  50. W.B. Wang and Z.P. Duan, On the invariant representation of spin tensors with applications, Int. J. Solids Struct. 27(1991) 329-341.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. C.S. Man and Z.H. Guo, A basis-free formula for time rate of Hill's strain tensors, Int. J. Solids Struct. 30(1993) 2819-2842.

    Article  MATH  MathSciNet  Google Scholar 

  52. H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain, Int. J. Solids Struct. 32(1995) 3327-3340.

    Article  MATH  Google Scholar 

  53. E.H. MacMillan, On the spin of tensors, J. Elasticity 27(1992) 69-84.

    Article  MATH  MathSciNet  Google Scholar 

  54. Z.H. Guo, Th. Lehmann, H.Y. Liang and C.S. Man, Twirl tensors and the tensor equation AX- XA= C, J. Elasticity 27(1992) 227-242.

    MATH  MathSciNet  Google Scholar 

  55. J.M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51(1984) 699-728.

    Article  MATH  MathSciNet  Google Scholar 

  56. C.C. Wang, A new representation theorem for isotropic functions, Part II. Arch. Rat. Mech. Anal. 36(1970) 198-223.

    Article  MATH  Google Scholar 

  57. A.J.M. Spencer, Theory of Invariants. In: A.C. Eringen (ed.), Continuum Physics, Vol. I. New York: Academic Press (1971).

  58. H. Xiao, O.T. Bruhns and A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mechanica 124(1997) 89-105.

    Article  MATH  MathSciNet  Google Scholar 

  59. H. Xiao, O.T. Bruhns and A. Meyers, Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures, Arch. Mech. (1998) (accepted).

  60. H. Xiao, O.T. Bruhns and A. Meyers, Hypo-elasticity model based upon the logarithmic stress rate, J. Elasticity 47(1997) 51-68.

    Article  MATH  MathSciNet  Google Scholar 

  61. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics. In: S. Flügge (ed.), Handbuch der Physik, Vol. III/3, Berlin, New York etc.: Springer-Verlag (1965).

    Google Scholar 

  62. F. Rellich, Perturbation Theory of Eigenvalue Problems.New York: Gordon and Breach (1969).

    MATH  Google Scholar 

  63. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Berlin, New York etc.: Springer-Verlag (1982).

    MATH  Google Scholar 

  64. G. Birkhoff and G.-C. Rota, Ordinary Differential Equations.the fourth edition. New York etc.: John Wiley & Sons (1989).

    MATH  Google Scholar 

  65. Jr. W.F. Donoghue, Monotone Matrix Functions and Analytic Continuation. Berlin: Springer-Verlag (1974).

    MATH  Google Scholar 

  66. K. Sawyers, Comments on the paper determination of the stretch and rotation in the polar decomposition of the deformation gradient, Quart. Appl. Math. 44(1986) 309-311.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Timme Bruhns, O. & Meyers, A.T.M. Strain Rates and Material Spins. Journal of Elasticity 52, 1–41 (1998). https://doi.org/10.1023/A:1007570827614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007570827614

Navigation