Skip to main content
Log in

Quantum Correlations, Nuclearity, and Spacetime Curvature

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proved for a Haag–Araki–Kastler quantum field theory, that gravitation reduces the correlations in the vacuum state. Secondly, we prove Bell's inequalities by nuclearity assumptions. The so-called ε-content of certain compact mappings restricts the size of the set of measurements which violate Bell's inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Summers, S. J. and Werner, R. F.: On Bell's inequalities and algebraic invariants, Lett. Math. Phys. 33(4) (1995) 321–334.

    Google Scholar 

  2. Summers, S. J. and Werner, R. F.: The vacuum violates Bell's inequalities, Phys. Lett. A 110 (1985), 257–259.

    Google Scholar 

  3. Raggio, G. A.: A remark on Bell's inequality and decomposable normal states, Lett. Math. Phys. 15 (1988), 27–29.

    Google Scholar 

  4. Wollenberg, M.: Algebras at space-time points for nets of local observables, Preprint, TU Berlin.

  5. Fredenhagen, K.: A remark on the cluster property, Comm. Math. Phys. 97 (1985), 461–464.

    Google Scholar 

  6. Buchholz, D. and Yngvason, Y.: Generalized nuclearity conditions and the split property in quantum field theory, Lett. Math. Phys. 23(2) (1991), 159–167.

    Google Scholar 

  7. Hawking, S. W.: Particle creation by black holes, Comm. Math. Phys. 43 (1975), 199–220.

    Google Scholar 

  8. Summers, S. J. and Verch, R.: Modular inclusion, the Hawking temperature, and quantum field theory in a curved spacetime, Lett. Math. Phys. 37 (1993), 145–158.

    Google Scholar 

  9. Haag, R.: Local Quantum Physics, Springer, New York, 1992.

    Google Scholar 

  10. Penrose, R.: Quantum Concepts of Space and Time, Oxford Sci. Publ. 3, Oxford Univ. Press, 1984.

  11. Buchholz, D. and Wichmann, E. H.: Causal independence and energy level density of states in quantum field theory, Comm. Math. Phys. 106 (1986), 321–343.

    Google Scholar 

  12. Jarchow, H.: Locally Convex Spaces, Teubner, Stuttgart, 1980.

    Google Scholar 

  13. Buchholz, D. and Porrmann, M.: How small is the phase space in quantum field theory? Anal. Inst. H. Poincare 52 (1990), 237–257.

    Google Scholar 

  14. Schumann, R.: Operator ideals and the statistical independence in quantum field theory, Lett. Math. Phys. 27(3) (1996), 159–271.

    Google Scholar 

  15. Buchholz, D., D'Antonio, C. and Longo, R.: Nuclear maps and modular structures I, J. Funct. Anal. 88 (1990), 233.

    Google Scholar 

  16. Haag, R. and Swieca, J. A.:When does a quantum field theory describe particles? Comm. Math. Phys. 1 (1965), 308–320.

    Google Scholar 

  17. Borchers, H. J.: Translation Groups and Particle Representation in Quantum Field Theory, Springer, New York, 1996.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, R. Quantum Correlations, Nuclearity, and Spacetime Curvature. Letters in Mathematical Physics 47, 1–17 (1999). https://doi.org/10.1023/A:1007553113988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007553113988

Navigation