Skip to main content
Log in

Statistics for Modeling Heavy Tailed Distributions in Geology: Part I. Methodology

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Many natural phenomena exhibit size distributions that are power laws or power law type distributions. Power laws are specific in the sense that they can exhibit extremely long or heavy tails. The largest event in a sample from such distribution usually dominates the underlying physical or generating process (floods, earthquakes, diamond sizes and values, incomes, insurance). Often, the practitioner is faced with the difficult problem of predicting values far beyond the highest sample value and designing his “system” either to profit from them, or to protect against extreme quantiles. In this paper, we present a novel approach to estimating such heavy tails. The estimation of tail characteristics such as the extreme value index, extreme quantiles, and percentiles (rare events) is shown to depend primarily on the number of extreme data that are used to model the tail. Because only the most extreme data are useful for studying tails, thresholds must be selected above which the data are modeled as power laws. The mean square error (MSE) is used to select such thresholds. A semiparametric bootstrap method is developed to study estimation bias and variance and to derive confidence limits. A simulation study is performed to assess the accuracy of these confidence limits. The overall methodology is applied to the Harvard Central Moment Tensor catalog of global earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Agterberg, F. P., Cheng, Q., and Wright, D. F., 1993, Fractal modelling of mineral deposits, in Elbrond and Tang, eds., APCOM93, Can. Inst. Min., Met. and Petr. Engin. (Montreal), p. 43–53.

    Google Scholar 

  • Bagnold, R. A., 1937, The size grading of sand by wind: Proc. Roy. Soc., v. A163, p. 250–264.

    Google Scholar 

  • Bagnold, R. A., and Barndorff–Nielsen, O., 1980, The pattern of natural size distributions: Sedimentology, v. 27, p. 199–207.

    Google Scholar 

  • Beirlant, J., Vynckier, P., and Teugels, J. L., 1996a, Tail index estimation, pareto quantile plots and regression diagnostics: J. Am. Stat. Assoc., v. 91, p. 1659–1667.

    Google Scholar 

  • Beirlant, J., Vynckier, P., and Teugels, J. L., 1996b, Excess functions and estimation of the extreme value index: Bernoulli, v. 2, p. 293–318.

    Google Scholar 

  • Beirlant, J., Teugels, J. L., and Vynckier, P., 1996c, Practical analysis of extreme values: Leuven University Press, Leuven.

    Google Scholar 

  • Bennet, J. G., 1936, Broken coal: J. Inst. Fuel, v. 10, p. 22–39.

    Google Scholar 

  • Caers, J., 1996. Statistical and geostatistical valuation of diamond deposits: unpubl. Doctoral dissertation, Katholieke Universiteit Leuven, Leuven, 220 p.

    Google Scholar 

  • Csorgö, S., and Viharos, L., 1998, Estimating the tail index, in Szyszkowicz, B., ed., Asymptotic methods in probability and statistics: Elsevier, Amsterdam.

    Google Scholar 

  • Danielsson, J., de Haan, Peng, L., and de Vries, C. G., 1997, Using a bootstrap method to choose the sample fraction in the tail index estimation: Report TI97-016 ?4, Erasmus University Amsterdam, Amsterdam.

    Google Scholar 

  • Dargahi-Noubary, G. R., 1989, On tail estimation: An improved method: Math. Geology, v. 21, p. 829–842.

    Google Scholar 

  • Dekkers, L. M., Einmahl, J. H. J., and de Haan, L., 1989, A moment-estimator for the index of the extreme value distribution: Ann. Stat., v. 17, p. 1833–1855.

    Google Scholar 

  • Deutsch, C. V., and Journel, A. G., 1997, GSLIB: Geostatistical software library and user's guide: Oxford University Press, New York, 368 p.

    Google Scholar 

  • Drew, L. J., Schuenemeyer, J. H., and Bawiec, W. J., 1982, Estimation of future rates of oil and gas discoveries in the Western Gulf of Mexico: U.S. Geol. Survey, Prof. paper 1252.

  • Dziewonski, A. M., Ekstöm, G., and Salganik, M. P., 1993, Centroid-moment tensor soluation for January–March 1992: Phys. Earth Planet. Inter., v. 77, p. 143–150.

    Google Scholar 

  • Efron, B., and Tibshirani, R., 1993, An introduction to the bootstrap: Chapman and Hall, New York.

    Google Scholar 

  • Hall, P., 1982, On simple estimates of an exponent of regular variation: J. Roy. Stat. Soc., B, v. 44, p. 37–42.

    Google Scholar 

  • Hall, P., 1990, Using the bootstrap to estimate mean squared error and select smoothing parameters in nonparametric problems: J. Multivariate Anal., v. 32, p. 177–203.

    Google Scholar 

  • Hartmann, 1960, Terrestrial, lunar and interplanetary rock fragmentation: Icarus, v. 10, p. 201–322.

    Google Scholar 

  • Hill, B. M., 1975, A simple and general approach to inference about the tail of a distribution: Ann. Stat., v. 3, p. 1163–1174.

    Google Scholar 

  • Houghton, J. C., 1988, Use of the truncated shifted pareto distribution in assessing size distribution of oil and gas fields: Math. Geology, v. 20, p. 907–937.

    Google Scholar 

  • Krige, D. G., and Dohm, C. E., 1994, The role of massive grade data bases in geostatistical applications in South African gold mines, in Dimitrakopoulos, R., ed., Geostatistics for the next century, Kluwer, Dordrecht, p. 46–54.

    Google Scholar 

  • Mandelbrot, B. B., 1982, The fractal geometry of nature: Freeman, San Francisco.

    Google Scholar 

  • McCrosky, R. E., 1968, Distribution of large meteorite bodies: Smithson. Astrophys. Observ., Washington, D.C., Spec. Rep. 280.

  • Pickands, J., 1975, Statistical inference using extreme order statistics: Ann. Stat., v. 3, p. 119–131.

    Google Scholar 

  • Rombouts, L., 1991, Statistical distributions for diamonds, in Meyer, H. O. A. and Leonardos, O. H., eds., Proceedings of the fifth international kimberlite conference, Araxa (Brasil): CPRM, Spec. Publ., 1B?/93, p. 202–214.

  • Schoutens, J. E., 1979, Empirical analysis of nuclear and high explosive cratering and analysis: Nuclear geoplosics, v. 55, Rep. DNA OIH-42.

  • Seyedghasemipour, S. J., and Bhattacharyya, B. B., 1990, The loghyperbolic: An alternative to the lognormal for modeling oil field size distribution: Math. Geology, v. 22, p. 557–571.

    Google Scholar 

  • Sichel, H. S., Kleingeld, W. J., and Assibey-Bonsu, W. A., 1992, A comparative study of three frequency-distribution models for use in ore evaluation: J. South Afr. Inst. Min. Metall., v. 92, p. 235–243.

    Google Scholar 

  • Smith, R. L., 1987, Estimating tails of probability distributions: Ann. Stat., v. 15, p. 1174–1207.

    Google Scholar 

  • Sornette, D., Knopoff, L., Kagan, Y. Y., and Vanneste, C., 1996, Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes: J. Geophys. Res., v. 101, p. 13883–13893.

    Google Scholar 

  • Turcotte, D. L., 1997, Fractals and chaos in geology and geophysics: Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caers, J., Beirlant, J. & Maes, M.A. Statistics for Modeling Heavy Tailed Distributions in Geology: Part I. Methodology. Mathematical Geology 31, 391–410 (1999). https://doi.org/10.1023/A:1007538624271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007538624271

Navigation