Skip to main content
Log in

Hydrogen Bonding and Electrostatic Interaction Contributions to the Interaction of a Cationic Drug with Polyaspartic Acid

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the mechanism and identify forces of interactionbetween polyaspartic acid and diminazene (a model drug). Such knowledgeis essential for the design of polymeric drug delivery systemsthat are based on molecular self-assembly into complexes or micellartype systems.

Methods. Complex formation was studied by isothermal titrationmicrocalorimetry and the McGhee von Hippel model was applied toobtain K obs, ΔH obs, and n obs. The calorimetry data were compared withboth an optical density study and the amount of free/complexed drug.

Results. The diminazene-polyaspartic acid interaction is enthalpicallydriven, whereby one diminazene molecule interacts with two monomersof polyaspartic acid. The dependence of K obs on saltconcentrationreveals a contribution of electrostatic interactions. However, applyingManning's counter ion condensation theory shows that the major drivingforce for the complex formation is hydrogen bonding, with interfacialwater molecules remaining buried within the complex. Themodelling of the pH dependence of K obs and ΔH obsdemonstrates thatthe ionization of carboxylic groups of polyaspartic acid is a prerequisitefor the interaction.

Conclusions. Complex formation between diminazene and polyasparticacid is driven by both electrostatic interactions and hydrogen bonding,with the latter being the dominating force. Although electrostaticinteractions are not the major driving force, ionization of the drug andpolymer is essential for complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. S. Kwon, M. Naito, K. Kataoka, M. Yokoyama, Y. Sakurai, and T. Okano. Block copolymers micelles as vehicles for hydrophobic drugs. Colloids Surf. 2:429–434 (1994).

    Google Scholar 

  2. G. S. Kwon and K. Kataoka. Block copolymer micelles as long circulating drug vehicles. Adv. Drug Deliv. Rev. 16:295–309 (1995).

    Google Scholar 

  3. M. Yokoyama. Novel passive targetable drug delivery with polymeric micelles. In: Okano, T. (Ed.). Biorelated polymers and gels: Controlled Release and applications in biomedical engineering. Academic Press, Boston, pp. 193–229, 1998.

    Google Scholar 

  4. A. Harada and K. Kataoka. Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macro-molecules 31:288–294 (1998).

    Google Scholar 

  5. E. Tomlinson and A. P. Rolland. Controllable gene therapy. Pharmaceutics of non-viral gene delivery systems. J. Contr. Rel. 39:377–372 (1996).

    Google Scholar 

  6. T. Wiseman, S. Williston, J. F. Brandts, and L. N. Lin. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131–137 (1989).

    Google Scholar 

  7. M. L. Doyle. Characterisation of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol. 8:31–35 (1997).

    Google Scholar 

  8. R. J. Willson, A. E. Beezeer, and J. C. Mitchell. Solid state reactions studied by isothermal microcalorimetry; the solid state oxidation of ascorbic acid. Int. J. Pharm. 132:45–51 (1996).

    Google Scholar 

  9. K. Kataoka. Design of nanoscopic vehicles for drug targeting based on micellisation of amphiphilic block copolymers. J.M.S.-Pure Appl.Chem. A31:1759–1769 (1994).

    Google Scholar 

  10. S. Roweton, S. J. Huang, and G. Swift. Poly(aspartic acid): Synthesis, biodegradation and current applications. J. Env. Polym. Deg. 5:175–181. (1997).

    Google Scholar 

  11. G. J. Kaloyanides. Drug-phospholipid interactions-role in amino-glycoside nephrotoxicity. Renal Failure. 14:351–357 (1992).

    Google Scholar 

  12. J. D. McGhee and P. H. von Hippel. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86:469–489 (1974).

    Google Scholar 

  13. T. Govender, T. Ehtezazi, S. Stolnik, L. Illum, and S.S. Davis. Complex formation between the anionic polymer (polyaspartic acid) and a cationic drug (procaine HCl): characterization by microcalorimetric studies. Pharm. Res. 16:1125–1131 (1999).

    Google Scholar 

  14. T. Lundback, H. Hansson, S. Knapp, R. Ladenstein, and T. Hard. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from sulfolobus solfataricus. J. Mol. Biol. 276:775–786 (1998).

    Google Scholar 

  15. E. C. Petrella, L. M. Machesky, D. A. Kaiser, and T. D. Pollard. Structural requirements and thermodynamics of the interaction of proline peptides with profilin. Biochemistry 35:16535–16543 (1996).

    Google Scholar 

  16. G. S. Manning. Limiting laws and counterion condensation in polyelectrolyte solution. I. Colligative properties. J. Chem. Phys. 51:924–933 (1969).

    Google Scholar 

  17. V. K. Misra, K. A Sharp, R. A. Friedman, and B. Honig. Salt effects on ligand-DNA binding minor groove binding antibiotics. J. Mol. Biol. 238:245–263. (1994).

    Google Scholar 

  18. P. Wang and I. Ando. A NMR study of structure and dynamic poly(aspartic acid) sodium salt. J. Mol. Struct. 447:81–88 (1998).

    Google Scholar 

  19. I. Haq, P. Lincoln, D. Suh, B. Norden, B. Z. Chowdhry, and J. B. Chaires. Interaction of ?-and ?-[Ru(phen)2DPPZ]2+ with DNA: A calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117:4788–4796 (1995).

    Google Scholar 

  20. P. D. Ross and S. Subramanian. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102 (1981).

    Google Scholar 

  21. T. N. Bhat, G. A. Bently, G. Boulot, M. I. Greene, D. Tello, W. Dall’ Acqua, H. Souchon, F. P. Schwarz, and R. A. Mariuzza. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc. Natl. Acad. Sci., USA. 91:1089–1093 (1994).

    Google Scholar 

  22. P. L. deHaseth, T. M. Lohman, M. T. Record Jr. Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release. J. Mol. Biol. 107:145–158 (1977).

    Google Scholar 

  23. D. P. Mascotti and T. M. Lohman. Thermodynamics of single stranded RNA binding to oligolysines containing. Biochemistry 31:8932–8946 (1992).

    Google Scholar 

  24. B. Lee and G. Graziano. A two-state model of hydrophobic hydration that produces compensating enthalpy and entropy changes. J. Am. Chem. Soc. 118:5163–5168 (1996).

    Google Scholar 

  25. P. R. Connelly, R. A. Aldape, F. J. Bruzzese, S. P. Chambers, M. J. Fitzgibbon, M. A. Fleming, S. Itoh, D. J. Livingston, M. A. Navia, J. A. Thomson, and K. P. Wilson. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction. Proc. Natl. Sci. USA. 91:1964–1968 (1994).

    Google Scholar 

  26. L. G. Fuentes, A. Camara-Artigas, O. Lopez-Mayorga, and C. Baron. Thermodynamic characterization of 5'-AMP binding to bovine live glycogen phosphorylase a. J. Biol. Chem. 271:27569–27574 (1996).

    Google Scholar 

  27. D. K. Srivastava, S. Wang, and K. L. Peterson. Isothermal titration microclorimetric studies for the binding of octenoyl-coA to medium chain acyl-coA dehydrogenase. Biochemistry 36:6359–6366 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehtezazi, T., Govender, T. & Stolnik, S. Hydrogen Bonding and Electrostatic Interaction Contributions to the Interaction of a Cationic Drug with Polyaspartic Acid. Pharm Res 17, 871–877 (2000). https://doi.org/10.1023/A:1007520628237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007520628237

Navigation