Skip to main content
Log in

A new generation of boundary element methods in fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper the dual boundary element methods for the analysis of crack problems in fracture mechanics is presented. The formulations described include: elastostatic, thermoelastic, elastoplastic and elastodynamic. Also presented are formulations relating to anisotropic and concrete materials. Particular attention is given to crack growth modelling. Examples are presented to demonstrate the capability and robustness of this new generation of boundary element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi-Brooghani, S.Y. and Wearing, J.L. (1996). Boundary Element XVIII. C.A. Brebbia et al. (eds.), Computational Mechanics Publications, Southampton, 429–438.

    Google Scholar 

  • Alfaiate, J., Pires, E.B. and Martins, J.C.A. (1992). Localised Damage II. 1, M.H. Aliabadi et al. (eds), Computational Mechanics Publications, Southampton, 261–280.

    Google Scholar 

  • Aliabadi, M.H. (1990). Proceedings 12th-International Conference on Boundary Elements, Brebbia (ed.), Computational Mechanics Publications, Southampton, 281–292.

    Google Scholar 

  • Aliabadi, M.H. (1997). Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 83–96.

    Article  Google Scholar 

  • Aliabadi, M.H. and Mi, Y. (1994). Handbook of Fatigue Crack Propagation in Metallic Structures. A. Carpinteri (ed), Elsevier Academic Publishers, Oxford, 397–432.

    Google Scholar 

  • Aliabadi, M.H. and Portela, A. (1992). Boundary Element Technology VII. C.A. Brebbia and M.S. Ingber (eds.), Computational Mechanics Publications, Southampton, 607–616.

    Google Scholar 

  • Aliabadi, M.H. and Rooke, D.P. (1991). Numerical Fracture Mechanics, Kluwer Academic Publishers, Dordrecht and Computational Mechanics Publications, Southampton.

    MATH  Google Scholar 

  • Apicella, A., Esposito, R. and Soprano, A. (1996). Boundary Element Communications 7, 212–216.

    Google Scholar 

  • Arrea, M. and Ingraffea, A.R. (1982). Mixed mode crack propagation in mortar and concrete. Report No. 81-13, Cornell University, Ithaca, NY.

    Google Scholar 

  • Banerjee, P.K., Asce, M. and Raveendra, S.T. (1987). Journal of Engineering Mechanics 113, 252–265.

    Article  Google Scholar 

  • Bathe, K.J. and Wilson, E.L. (1976). Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliff, NJ.

    MATH  Google Scholar 

  • Blackburn, W. and Hall, W.S. (1994). Boundary Element Method XVI. C.A. Brebbia (ed), Computational Mechanics Publications, 413–422.

  • Blandford, G.E., Ingraffea, A.R. and Liggett, J.A. (1981). International Journal for Numerical Methods in Engineering 17, 387–404.

    Article  MATH  Google Scholar 

  • Bush, M.B. (1994). Boundary Element Methods XVI. C.A. Brebbia (ed.), Computational Mechanics Publications, Southampton, 381–388.

    Google Scholar 

  • Chang, C. and Mear, M.E. (1995). International Journal of Fracture 74, 219–251.

    Google Scholar 

  • Chen, W.H. and Chen, T.C. (1995). International Journal for Numerical Methods in Engineering 38, 1739–1756.

    Article  MATH  Google Scholar 

  • Cisilino, A. and Aliabadi, M.H. (1997). International Journal of Pressure Vessels 70, 135–144.

    Article  Google Scholar 

  • Cooke, R., Rooke, D.P., Smith, A. and Bowles, R. (1985). Residual stress fields at notches: effect on fatigue crack growth, RAE Technical Report 85049, Royal Aircraft Establishment, Farnborough.

    Google Scholar 

  • Corradi, S., Aliabadi, M.H. and Marchetti, M. (1996). Theoretical and Applied Fracture Mechanics 25, 43–49.

    Article  Google Scholar 

  • Cruse, T.A. (1972). Surface Cracks: Physical Problems and Computational Solutions. J.L. Swedlow (ed.), American Society of Mechanical Engineers, New York, 153–170.

    Google Scholar 

  • Dominguez, J. (1993). Boundary Elements in Dynamics. Computational Mechanics Publications, Southampton.

    MATH  Google Scholar 

  • Dominguez, J. and Gallego, J. (1992). International Journal for Numerical Methods in Engineering 33, 635–647.

    Article  MATH  Google Scholar 

  • Fedelinski, P., Aliabadi, M.H. and Rooke, D.P. (1994). International Journal of Fracture 65, 369–381.

    Article  ADS  Google Scholar 

  • Fedelinski, P., Aliabadi, M.H. and Rooke, D.P. (1995). International Journal of Solids and Structures 32, 3555–3571.

    Article  MATH  Google Scholar 

  • Fedelinski, P., Aliabadi, M.H. and Rooke, D.P. (1996). Computers and Structures 59, 1021–1031.

    Article  MATH  Google Scholar 

  • Fedelinski, P., Aliabadi, M.H. and Rooke, D.P. (1996). Engineering Analysis with Boundary Elements 17, 45–56.

    Article  Google Scholar 

  • Fedelinski, P., Aliabadi, M.H. and Rooke, D.P. (1997). International Journal for Numerical Methods in Engineering 40, 1555–1572.

    Article  Google Scholar 

  • Gandhi, K.R. (1972). Journal of Strain Analysis 7, 157–162.

    Google Scholar 

  • Giumaraes, S. and Telles, J.C.F. (1993). Boundary Element Technology VIII. H. Pina and C.A. Brebbia (eds.), Computational Mechanics Publications, Southampton, 241–251.

    Google Scholar 

  • Gray, L.J., Martha, L.F. and Ingraffea, A.R. (1990). International Journal for Numerical Methods in Engineering 29, 1135–1158.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillerborg, A., Modear, M. and Peterson, P.E. (1976). Cement Concrete Research 6, 773–782.

    Article  Google Scholar 

  • Irschik, H. and Ziegler, F. (1981). Acta Mechanica 39, 155–169.

    Article  MATH  Google Scholar 

  • Lee, S.S. (1996). International Journal of Fracture 77, 323–336.

    Article  Google Scholar 

  • Leitao, V., Aliabadi, M.H. and Rooke, D.P. (1995). Computers and Structures 54, 443–454.

    Article  MATH  Google Scholar 

  • Leitao, V., Aliabadi, M.H. and Rooke, D.P. (1995). International Journal of Fatigue 17, 353–364.

    Article  Google Scholar 

  • Leitao, V., Aliabadi, M.H. and Rooke, D.P. (1995). International Journal for Numerical Methods in Engineering 38, 315–333.

    Article  MATH  ADS  Google Scholar 

  • Leitao, V., Aliabadi, M.H., Rooke, D.P. and Cook, R. (1995). In Boundary Elements XIV 2, C.A. Brebbia et al. (eds.), Computational Mechanics Publications, Southampton, 331–350.

    Google Scholar 

  • Lutz, E.D., Ingraffea, A.R. and Gray, L.J. (1992). International Journal for Numerical Methods in Engineering 35, 1737–1751.

    Article  MATH  ADS  Google Scholar 

  • Manolis, G.D. and Beskos, D.E. (1988). Boundary Element Methods in Elastodynamics. Unwin Hyman, London.

    Google Scholar 

  • Martinez, M. and Aliabadi, M.H. (1996). Simulation and Modelling in Bioengineering. M. Cerrolaza, D. Gugo and C.A. Brebbia (eds.). Computational Mechanics Publications, Southampton, 175–188.

    Google Scholar 

  • Mellings, S.C. (1995). Flaw identification using the boundary element method. International Journal for Numerical Methods in Engineering 38, 399–419.

    Article  MATH  Google Scholar 

  • Mellings, S.C. and Aliabadi, M.H. (1996). Three-dimensional flaw identification using inverse analysis. International Journal of Engineering Sciences 34, 453–469.

    Article  MATH  MathSciNet  Google Scholar 

  • Mi, Y. and Aliabadi, M.H. (1992). Engineering Analysis with Boundary Elements 10, 161–171.

    Article  Google Scholar 

  • Mi, Y. and Aliabadi, M.H. (1994). Computers and Structures 52, 871–878.

    Article  MATH  Google Scholar 

  • Mi, Y. and Aliabadi, M.H. (1995). Communications in Numerical Methods in Engineering 11, 167–177.

    Article  MATH  Google Scholar 

  • Nardini, D. and Brebbia, C.A. (1982). Boundary Element Methods in Engineering. C.A. Brebbia (ed.), Springer Verlag, Berlin.

    Google Scholar 

  • Pan, E. and Amadei, B. (1996). International Journal of Fracture 77, 161–174.

    Article  Google Scholar 

  • Portela, A., Aliabadi, M.H. and Rooke, D.P. (1991). Boundary Element Technology VI. C.A. Brebbia (ed.), Computational Mechanics Publications, Southampton, 381–392.

    Google Scholar 

  • Portela, A., Aliabadi, M.H. and Rooke, D.P. (1992). International Journal for Numerical Methods in Engineering 33, 1269–1287.

    Article  MATH  Google Scholar 

  • Portela, A., Aliabadi, M.H. and Rooke, D.P. (1992). International Journal of Fracture 55, 17–28.

    Article  ADS  Google Scholar 

  • Portela, A., Aliabadi, M.H. and Rooke, D.P. (1993). Computers and Structures 46, 237–247.

    Article  MATH  ADS  Google Scholar 

  • Prasad, N.N.V., Aliabadi, M.H. and Rooke, D.P. (1994). International Journal of Fracture 66, 255–272.

    Article  ADS  Google Scholar 

  • Ibid, (1994). R45–R50.

    Article  ADS  Google Scholar 

  • Prasad, N.N.V., Aliabadi, M.H. and Rooke, D.P. (1996). International Journal of Fatigue 18, 349–361.

    Article  Google Scholar 

  • Prasad, N.N.V., Aliabadi, M.H. and Rooke, D.P. (1996). International Journal of Solids and Structures 33, 2695–2718.

    Article  MATH  Google Scholar 

  • Rots, J.G. (1988). Computational modelling of concrete fracture. Dissertation, Delft University of Technology, The Netherlands.

    Google Scholar 

  • Rudolphi, T.J., Krishnasamy, G., Schmerr, L.W. and Rizzo, F.J. (1988). Boundary Element X. C.A. Brebbia (ed.), 3, Computation Mechanics Publications, 249–264.

  • Saez, A., Gallego, R. and Dominguez, J. (1995). International Journal for Numerical Methods in Engineering 20, 1941–1950.

    Google Scholar 

  • Saleh, A.L. and Aliabadi, M.H. (1995). Engineering Fracture Mechanics 51, 533–545.

    Article  Google Scholar 

  • Salgado, N. and Aliabadi, M.H. (1996). Engineering Fracture Mechanics 54, 91–105.

    Article  Google Scholar 

  • Sollero, P. and Aliabadi, M.H. (1995). Boundary Elements XVII. C.A. Brebbia, S. Kim, T.A. Osswald and H. Power (eds.), Computational Mechanics Publications, Southampton, 267–278.

    Google Scholar 

  • Sollero, P. and Aliabadi, M.H. (1995). Composite Structures 31, 229–233.

    Article  Google Scholar 

  • Tanaka, K. (1974). Engineering Fracture Mechanics 6, 494–507.

    Article  Google Scholar 

  • Tuhkuri, J. (1995). Boundary element analysis of cracks under normal compressive stresses. Helsinki University of Technology. Ship Laboratory, Report M-197.

  • Watson, J.O. (1995). International Journal for Numerical Methods in Engineering 38, 2389–2412.

    Article  MATH  Google Scholar 

  • Watson, J.O. (1986). Developments in Boundary Element Methods 4. P.K. Banerjee and J.O. Watson (eds.), Elsevier Applied Science Publishers, Barking, 1–28.

    Google Scholar 

  • Wilde, A. and Aliabadi, M.H. (1996). Boundary Elements XVIII. C.A. Brebbia, J. Martinez and M.H. Aliabadi (eds.), Computational Mechanics Publications, Southampton, 449–464.

    Google Scholar 

  • Yan, A.M. and Nguyen-Dang, H. (1995). Computational Mechanics 16, 273–280.

    MATH  ADS  Google Scholar 

  • Young, A. (1996). International Journal for Numerical Methods in Engineering 39, 1265–1294.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliabadi, M. A new generation of boundary element methods in fracture mechanics. International Journal of Fracture 86, 91–125 (1997). https://doi.org/10.1023/A:1007381025099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007381025099

Navigation