Skip to main content
Log in

Embryogenesis of the central nervous system of the pond snail Lymnaea stagnalis L. An ultrastructural study

  • Published:
Journal of Neurocytology

Abstract

The ultrastructural characteristics of the developing CNS of the pond snail, Lymnaea stagnalis, were investigated, with special attention paid to three specific stages of embryonic development, representing distinctly different phases of both the body morphogenesis and gangliogenesis. These were the 35% (veliger), the 50–55% (metamorphic), and the 75% (post-metamorphic, adult-like) stages of embryonic development. Also, a brief comparison was done with the CNS of hatchlings (100% of embryonic development). During embryogenesis specialized axo-axonic synapses and elements of the glial system, including the ganglionic (neural) sheath, were rarely observed, whereas the frequent occurrence of unspecialized axo-somatic contacts could be demonstrated. Synapse-like axo-axonic connections could be found first in 75% embryos, showing asymmetric vesicle clustering on the “presynaptic” side and increased electron density of the apposed membranes. These phenomena may reflect the dominance of modulatory processes in the CNS during embryogenesis, and the absence of the neural sheath may facilitate trophic and/or hormonal influences within the developing ganglia. The gradual increase in the size of ganglia and the diameter of their neuropils was not accompanied by any widening of the cell body layer or increasing diameter of the nerve cell bodies until the very end of embryogenesis. With respect to the ultrastructural organization of the neuropil, and possibly the entire CNS, a determining stage seems to be that of metamorphosis. Two types of neuropil could be observed at this time; the metamorphosing neuropil with an irregular organization of wavy axon profiles, and well-structured neuropil with a regular organization of axon profiles. Ganglia with irregular or regular neuropil occurred simultaneously in the developing CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BAILEY, C. H., THOMPSON, E. B., CASTELLUCCI, V. F. & KANDEL, E. R. (1979) Ultrastructure of the synapses of sensory neurons that mediate gill-withdrawal reflex in Aplysia. Journal of Neurocytology 8, 415–44.

    PubMed  Google Scholar 

  • BULLOCK, T. H. & HORRIDGE, G. A. (1965) Structure and Function in the Nervous System of Invertebrates. San Francisco: Freeman.

    Google Scholar 

  • BULLOCH, A. G. M. (1985) Development and plasticity of the molluscan nervous system. In The Mollusca (edited by WILBUR, K. M. & WILLOWS, A. O. D.), pp. 335–408. New York: Academic Press.

    Google Scholar 

  • CAROLL, D. J. & KEMPF, S. T. (1994) Changes occur in the central nervous system of the nudibranch Berghia verrucornis (Mollusca, Opistobranchia) during metamorphosis. Biological Bulletin 186, 202–212.

    Google Scholar 

  • CROLL, R. P. & CHIASSON, B. J. (1989) Postembryonic development of serotoninlike immunreactivity in the central nervous system of Lymnaea stagnalis. Journal of Comparative Neurology 280, 122–142.

    PubMed  Google Scholar 

  • CROLL, R. P. & VORONEZHSKAYA, E. E. (1996) Early elements in gastropod neurogenesis. Developmental Biology 173, 344–347.

    PubMed  Google Scholar 

  • CROLL, R. P., VORONEZHSKAYA, E. E., HIRIPI, L. & ELEKES, K. (1999) Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: II. Postembryonic development of central and peripheral cells. Journal of Comparative Neurology 404, 297–309.

    PubMed  Google Scholar 

  • ELEKES K. (1978) Ultrastructure of synapses in the central nervous system of lamellibranch molluscs. Acta Biologica Hungarica 29, 139–154.

    Google Scholar 

  • ELEKES, K. (1991a) Serotonin-immunoreactive varicosities in the cells body region and neural sheath of the snail, Helix pomatia: An electron microscopic immunocytochemical study. Neuroscience 42, 583–591.

    PubMed  Google Scholar 

  • ELEKES, K. (1991b) Neurotransmitters in the gastropod CNS: Comparative immunocytochemistry. Acta Biologica Hungarica 43, 213–220.

    Google Scholar 

  • ELEKES, K. & NÄSSEL, D. R. (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell and Tissue Research 262, 177–190.

    Google Scholar 

  • ELEKES, K. & UDE, J. (1993) An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: Ultrastructure and synaptic connections. Journal of Neurocytology 22, 1–13.

    PubMed  Google Scholar 

  • ELEKES, K., VEHOVSZKY, Á. & SALÁNKI, J. (1983) Ultrastructure of synaptic connections of a bimodal pacemaker neurons in the central nervous system of Helix pomatia L. Neuroscience 8, 617–629.

    PubMed  Google Scholar 

  • ELEKES K., HUSTERT, R. & GEFFARD, M. (1987) Serotonin-immunoreactive and dopamine-immunoreactive neurons in the terminal ganglion of the cricket, Acheta domestica: Light-and electron microscopic immunocytochemistry. Cell and Tissue Research 250, 167–180.

    Google Scholar 

  • ELEKES, K., VORONEZHSKAYA, E. E., HIRIPI, L., ECKERT, M. & RAPUS, J. (1996) Octopamine in the developing nervous system of the pond snail, Lymnaea stagnalis L. Acta Biologica Hungarica 47, 73–87.

    PubMed  Google Scholar 

  • HERNÁDI, L., ELEKES, K. & S.-RÓZSA, K. (1989) Distribution of serotonin-containing neurons in the central nervous system of the snail Helix pomatia. Cell and Tissue Research 257, 313–323.

    Google Scholar 

  • JACOB, M. H. (1984) Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. Journal of Neuroscience 4, 1225–1239.

    PubMed  Google Scholar 

  • KEMENES, G., ELEKES, K., HIRIPI, L. & BENJAMIN, P. R. (1989) A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. Journal of Neurocytology 18, 193–208.

    PubMed  Google Scholar 

  • KEMPF, S. C., PAGE, L. R. & PIRES, A. (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. Journal of Comparative Neurology 386, 507–528.

    PubMed  Google Scholar 

  • KRIEGSTEIN, A. R. (1977a) Stages of post-hatching development of Aplysia californica. Journal of Experimental Zooloy 199, 275–288.

    Google Scholar 

  • KRIEGSTEIN, A. R. (1977b) Development of the nervous system of Aplysia californica. Proceedings of the National Academy of Sciences USA 74, 375–378.

    Google Scholar 

  • LEITCH, B., LAURENT, G. & SHEPHERD, D. (1992) Embryonic development of synapses on spiking local interneurons in locust. Journal of Comparative Neurology 324, 213–236.

    PubMed  Google Scholar 

  • LIN, M.-F. & LEISE, E. M. (1996) Gangliogenesis in the prosobranch Ylianassa obsoleta. Journal of Comparative Neurology 374, 180–193.

    PubMed  Google Scholar 

  • LOPRESTI, V., MACAGNO, E. R. & LEVINTHAL, C. (1973) Structure and development of neuronal connections in isogenic organisms: Cellular interaction in the development of the optic lamina of Daphnia. Proceedings of the National Academy of Sciences U.S.A. 70, 433–437.

    Google Scholar 

  • MACAGNO, E. R. (1979) Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustaces, Branchiopoda). Developmental Biology 15, 1287–1298.

    Google Scholar 

  • MACAGNO, E. R. (1981) Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). II. Induced retardation of optic axon ingrowth results in a delay in laminar neuron differentiation. Journal of Neuroscience 1, 945–955.

    PubMed  Google Scholar 

  • MAROIS, R. (1989) Embryonic development of Lymnaea stagnalis: General, neuronal and behavioral aspects.M. Sc. Thesis, Halifax, N. S: Dalhousie University.

    Google Scholar 

  • MAROIS, R. & CAREW, T. J. (1990) The gastropod nervous system in metamorphosis. Journal of Neurobiology 7, 1053–1071.

    Google Scholar 

  • MAROIS, R. & CAREW, T. J. (1997a) Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biological Bulletin 192, 388–398.

    PubMed  Google Scholar 

  • MAROIS, R. & CAREW, T. J. (1997b) Ontogeny of serotonergic neurons in Aplysia californica. Journal of Comparative Neurology 386, 477–490.

    PubMed  Google Scholar 

  • MAROIS, R. & CAREW, T. J. (1997c) Projection patterns and target tissues of the serotonergic cells in larval Aplysia californica. Journal of Comparative Neurology 386, 491–506.

    PubMed  Google Scholar 

  • MAROIS, R. & CROLL, R. P. (1992) Development of serotoninlike immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. Journal of Comparative Neurology 322, 255–265.

    PubMed  Google Scholar 

  • MESCHERIAKOV, V. N. (1990) The common pond snail Lymnaea stagnalis L. In Animal Species for Developmental Studies (edited by DETLAFF, D. A. & VASSETZKY, S. G.), pp. 69–132. New York, London: Plenum Press.

    Google Scholar 

  • MORRILL, J. B. (1982) Development of the pulmonate gastropod, Lymnaea. In Developmental Biology of the Freshwater Invertebrates (edited by HARRISON, F. W. & COWDEN, R. R.), pp. 399–483. New York: Alan P. Liss.

    Google Scholar 

  • PAGE, L. (1992a) A new interpretation of the nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. I. Cerebral and visceral loop ganglia. Biological Bulletin 182, 348–365.

    Google Scholar 

  • PAGE, L. (1992b) A new interpretation of the nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. II. Pedal, pleural and labial ganglia. Biological Bulletin 182, 366–381.

    Google Scholar 

  • PENTREATH, V. W., RADOJCIC, T., SEAL, L. H. & WINSTANLEY, E. K. (1985) The glial cells and glianeuron relations in the buccal ganglia of Planorbis corneus (L.): Cytological qualitative and quantitative changes during growth and aging. Philosophical Transactions of the Royal Society London (Biology) 307, 399–455.

    Google Scholar 

  • POGORELAYA, N. K., ELEKES, K. & KISS, I. (1977) Electron microscopic investgation of the a giant neuron identified in the right parietal ganglion of Lymanea stagnalis. Acta Biologica Hungarica 28, 451–460.

    Google Scholar 

  • RAVEN, C. P. (1966) Morphogenesis: The Analysis of Molluscan Development. New York: Pergamon Press.

    Google Scholar 

  • REYNOLDS, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208–212.

    PubMed  Google Scholar 

  • ROUBOS, E. W., BOER, H. H. & SCHOT, L. P. C. (1981) Peptidergic neurons and the control of neuroendocrine activity in the freshwater snail Lymnaea stagnalis (L.). In NeurosecretionÑMolecules, Cells, Systems (edited by FARNER, D. S. & LEDERIS, K.), pp. 119–127. Plenum Press, New York: Plenum Press.

    Google Scholar 

  • ROUBOS, E. W. & MOORER-VAN DELFT, C. M. (1979) Synaptology of the central nervous system of the freshwater snail Lymnaea stagnalis (L.), with particular reference to neurosecretion. Cell and Tissue Research 198, 217–235.

    PubMed  Google Scholar 

  • ROUBOS, E. W. & VAN DER WAL-DIVENDAL, R. M. (1980) Ultrastructural analysis of peptide-hormone release by exocytosis. Cell and Tissue Research 207, 267–275.

    PubMed  Google Scholar 

  • SCHACHER, S., KANDEL, E. R. & WOOLLEY, R. (1979a) Development of neurons in the abdominal ganglion of Aplysia californica-I. Axosomatic synaptic contacts. Developmental Biology 71, 163–175.

    PubMed  Google Scholar 

  • SCHACHER, S., KANDEL, E. R. & WOOLLEY, R. (1979b) Development of neurons in the abdominal ganglion of Aplysia californica-II. Nonneural support cells. Developmental Biology 71, 176–190.

    PubMed  Google Scholar 

  • SELLECK, S. B. & SELLER, H. (1991) The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron 6, 83–99.

    PubMed  Google Scholar 

  • SERFŐZŐ, Z., ELEKES, K. & VARGA, V. (1998) NADPHdiaphorase activity in the nervous system of the embryonic and juvenile pond snail, Lymnaea stagnalis. Cell and Tissue Research 292, 579–586.

    PubMed  Google Scholar 

  • SUDLOW, L. C., JIAN, J., MOROZ, L. L. & GILLETTE, R. (1998) Serotonin immunoreactivity in the central nervous system of the marine molluscs Pleuorabranchaea californica and Tritonia diomedea. Journal of Comparative Neurology 395, 466–480.

    PubMed  Google Scholar 

  • VAUGHN, J. E. (1989) Review: Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285.

    PubMed  Google Scholar 

  • VORONEZHSKAYA, E. E. & ELEKES, K. (1993) Distribution of serotonin-like immunoreactive neurones in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1, 371–383.

    PubMed  Google Scholar 

  • VORONEZHSKAYA, E. E. & ELEKES, K. (1996) Transient and sustained expression of FMRFamide-likeimmunoreactivity in the developing nervous system Lymnaea stagnalis (Mollusca, Pulmonata). Cellular and Molecular Neurobiology 16, 661–676.

    PubMed  Google Scholar 

  • VORONEZHSKAYA, E. E., HIRIPI, L., ELEKES, K. & CROLL, R. P. (1999) Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopamine-containing neurons and dopamine-dependent behaviors. Journal of Comparative Neurology 404, 285–296.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, T., Elekes, K. Embryogenesis of the central nervous system of the pond snail Lymnaea stagnalis L. An ultrastructural study. J Neurocytol 29, 43–60 (2000). https://doi.org/10.1023/A:1007112130414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007112130414

Keywords

Navigation