Skip to main content
Log in

Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The development of the nervous system in the cephalocarid Hutchinsoniella macracantha is investigated here for the first time using a combination of immunolabeling (tubulin, serotonin), nuclear counterstaining, confocal laser scanning microscopy, and computer-aided 3D reconstruction in order to compare cephalocarids to the growing number of other arthropods into which neurodevelopmental studies have been carried out. The existing description of external larval development in H. macracantha is complemented by a description of hitherto unknown embryonic and larval stages. The early embryo exhibits the three naupliar appendage anlagen (antennula, antenna, and mandible) and a short maxillular bud, all equipped with a segmental appendage nerve. As in other crustaceans, neurites of the proto-, deuto-, and tritocerebrum form a circumesophageal ring. In the late embryo, several telsonic neurons send their neurites anteriorly into the ventral nerve cord in a manner reminiscent of posterior pioneer neurons. The hatching metanauplius already comprises a well-developed brain, a subesophageal ganglion made up of three fused neuromeres, and four distinctive neuromeres containing segmental commissures in the yet limbless prospective thorax. Most postnaupliar segments arise from a distinct growth zone situated anterior to the telson that proliferates cells anteriorly. Neuronal differentiation begins before new segments are externally separated from the trunk ending and, in the thorax, before the formation of limb anlagen, i.e., earlier than in all other crustaceans studied so far. In the growth zone of one hatchling, we found a pair of large apical cells adjacent to an inward-pointing row of three smaller cells, an arrangement reminiscent of the neuroblasts and ganglion mother cells in other crustaceans. In the trunk, segmental nerves, commissures, and serotonin-like immunoreactive neurons differentiate successively from anterior to posterior. The sequence in which serially homologous neural features develop is basically the same throughout all segments of the trunk and correlated with the differentiation of limbs. It appears that the neuroanatomical differences between the adult thorax and the abdomen result from this developmental sequence stopping earlier in the abdomen than in the thorax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addis A, Biagi F, Floris A, Puddu E, Carcupino M (2007) Larval development of Lightiella magdalenina (Crustacea, Cephalocarida). Mar Biol 152(3):733–744

    Article  Google Scholar 

  • Anandan P, Krishnamurthy R, Altaff K (2013) Studies on different stages of post-embryonic development of cyclopoid copepod Apocyclops dengizicus. Int J Curr Microbiol Appl Sci 2(2):20–27

    Google Scholar 

  • Blanchard CE (1986) Early development of the thorax and the nervous system of the brine shrimp Artemia. Dissertation, University of Leicester

  • Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. 1. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179(1):41–64

    Article  CAS  PubMed  Google Scholar 

  • Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea): an immunohistochemical study and 3D-reconstruction. J Morphol 271(2):169–189

    PubMed  Google Scholar 

  • Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 4(32):1–36

    Google Scholar 

  • Carcupino M, Floris A, Addis A, Castelli A, Curini-Galletti M (2006) A new species of the genus Lightiella: the first record of Cephalocarida (Crustacea) in Europe. Zool J Linn Soc 148(2):209–220

    Article  Google Scholar 

  • Carotenuto Y (1999) Morphological analysis of larval stages of Temora stylifera (Copepoda, Calanoida) from the Mediterranean Sea. J Plankton Res 21(9):1613–1632

    Article  Google Scholar 

  • Carter ME, Bradford JM (1972) Postembryonic development of three species of freshwater harpacticoid Copepoda. Smithson Contrib Zool 119:1–26

    Article  Google Scholar 

  • Dahms HU (2000) Phylogenetic implications of the crustacean nauplius. Hydrobiology 417:91–99

    Article  Google Scholar 

  • Deutsch JS (2001) Are Hexapoda members of the Crustacea? Evidence from comparative developmental genetics. Ann Soc Entomol Fr 37(1–2):41–49

    Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanadaicea). Zool Jahrb Abt Anat Ontog Tiere 89:503–566

    Google Scholar 

  • Dohle W (1976) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea). II. Die Differenzierung und Musterbildung des Ektoderms. Zoomorph 84(3):235–277

    Article  Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104:147–160

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. A.A. Balkema, Lisse, Abingdon, Exton (PA), Tokyo, pp 95–134

    Google Scholar 

  • Elofsson R (1992) Monoaminergic and peptidergic neurons in the nervous system of Hutchinsoniella macracantha (Cephalocarida). J Crust Biol 12(4):531–536

    Article  Google Scholar 

  • Elofsson R, Hessler RR (1990) Central nervous system of Hutchinsoniella macracantha (Cephalocarida). J Crust Biol 10(3):423–439

    Article  Google Scholar 

  • Fischer AHL, Scholtz G (2010) Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Biol 129(1):59–76

    Article  Google Scholar 

  • Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271(12):1457–1481

    Article  PubMed  Google Scholar 

  • Fritsch M, Richter S (2012) Nervous system development in Spinicaudata and Cyclestherida (Crustacea, Branchiopoda): comparing two different modes of indirect development by using an event pairing approach. J Morphol 273(7):672–695

    Article  PubMed  Google Scholar 

  • Fritsch M, Bininda-Emonds ORP, Richter S (2013) Unraveling the origin of Cladocera by identifying heterochrony in the developmental sequences of Branchiopoda. Front Zool 10:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerberding M (1997) Germ band formation and early neurogenesis of Leptodora kindti (Cladocera): first evidence for neuroblasts in the entomostracan crustaceans. Invertebr Reprod Dev 31(1):63–73

    Article  Google Scholar 

  • Golez SN, Takahashi T, Ishimaru T, Ohno A (2004) Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankton Biol Ecol 51(1):15–25

    Google Scholar 

  • Gruner H-E (1993) 1. Klasse Crustacea. In: Gruner H-E, Moritz M, Dunger W (eds) Lehrbuch der Speziellen Zoologie. Begründet von Alfred Kästner. 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer Verlag, Jena, Stuttgart, New York, pp 448–1030

    Google Scholar 

  • Harrison PJH, Sandeman DC (1999) Morphology of the nervous system of the barnacle cypris larva (Balanus amphitrite Darwin) revealed by light and electron microscopy. Biol Bull Woods Hole 197:144–158

    Article  Google Scholar 

  • Hartenstein V, Younossi-Hartenstein A, Lekven A (1994) Delamination and division in the Drosophila neurectoderm: spatiotemporal pattern, cytoskeletal dynamics, and common control by neurogenic and segment polarity genes. Dev Biol 165(2):480–499

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2003) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258(1):44–56

    Article  CAS  PubMed  Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46(2):162–194

    Article  PubMed  Google Scholar 

  • Harzsch S (2007) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species, Phylogeny and Evolution 1:33–57

    Google Scholar 

  • Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertebr Neurosci 1:53–65

    Article  CAS  Google Scholar 

  • Harzsch S, Glötzner J (2002) An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct Dev 30(4):251–270

    Article  PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton J, Dawirs RR, Beltz B (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201(17):2465–2479

    PubMed  Google Scholar 

  • Haug JT, Waloszek D, Haug C, Maas A (2010) High-level phylogenetic analysis using developmental sequences: the Cambrian dagger Martinssonia elongata, dagger Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct Dev 39(2–3):154–173

    Article  CAS  PubMed  Google Scholar 

  • Haug JT, Olesen J, Maas A, Waloszek D (2011) External morphology and post-embryonic development of Derocheilocaris remanei (Mystacocarida) revisited, with a comparison to the Cambrian taxon Skara. J Crust Biol 31(4):668–692

    Article  Google Scholar 

  • Hessler RR, Elofsson R (1992) Cephalocarida. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 9–24

    Google Scholar 

  • Hessler RR, Elofsson R, Hessler AY (1995) Reproductive system of Hutchinsoniella macracantha (Cephalocarida). J Crust Biol 15(3):493–522

    Article  Google Scholar 

  • Jirikowski GJ, Richter S, Wolff C (2013) Myogenesis of Malacostraca: the “egg-nauplius” concept revisited. Front Zool 10:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Koenemann S, Olesen J, Alwes F, Iliffe TM, Hoenemann M, Ungerer P, Wolff C, Scholtz G (2009) The post-embryonic development of Remipedia (Crustacea): additional results and new insights. Dev Genes Evol 219(3):131–145

    Article  PubMed  Google Scholar 

  • Lacalli TC (2009) Serial EM analysis of a copepod larval nervous system: naupliar eye, optic circuitry, and prospects for full CNS reconstruction. Arthropod Struct Dev 38(5):361–375

    Article  PubMed  Google Scholar 

  • Lauterbach K-E (1983) Zum Problem der Monophylie der Crustacea. Verh Naturwiss Vereins Hamburg 26:293–320

    Google Scholar 

  • Lauterbach K-E (1986) Zum Grundplan der Crustacea. Verh Naturwiss Vereins Hamburg 28:27–63

    Google Scholar 

  • Loesel R, Richter S (2014) Neurophylogeny: from description to character analysis. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 505–514

    Google Scholar 

  • Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall GA, Fusco G (eds) Arthropod biology and evolution: molecules, development, morphology. Springer, Heidelberg, pp 299–342

    Chapter  Google Scholar 

  • Martin JW, Olesen J, Hoeg JT (2014) Atlas of crustacean larvae. John Hopkins University Press, Baltimore

    Google Scholar 

  • Mayer G, Kato C, Quast B, Chisholm RH, Landman KA, Quinn LM (2010) Growth patterns in Onychophora (velvet worms): lack of a localised posterior proliferation zone. BMC Evol Biol 10:339

    Article  PubMed Central  PubMed  Google Scholar 

  • Minelli A, Fusco G (2013) Arthropod post-embryonic development. In: Minelli A, Boxshall GA, Fusco G (eds) Arthropod biology and evolution: molecules, development, morphology. Springer, Heidelberg, pp 91–122

    Chapter  Google Scholar 

  • Minelli A, Brena C, Deflorian G, Maruzzo D, Fusco G (2006) From embryo to adult. Beyond the conventional periodization of arthropod development. Dev Genes Evol 216:373–383

    Article  PubMed  Google Scholar 

  • Olesen J, Haug JT, Maas A, Waloszek D (2011) External morphology of Lightiella monniotae (Crustacea, Cephalocarida) in the light of Cambrian ‘Orsten’ crustaceans. Arthropod Struct Dev 40(5):449–478

    Article  PubMed  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders HL (1963) The Cephalocarida. Mem Conn Acad Arts Sci 15:1–80

    Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux Arch Dev Biol 202(1):36–48

    Article  Google Scholar 

  • Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38(3):175–187

    Article  Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall GA, Fusco G (eds) Arthropod biology and evolution: molecules, development, morphology. Springer, Heidelberg, pp 63–90

    Chapter  Google Scholar 

  • Schrehardt A (1987) A scanning electron-microscope study of the post-embryonic development of Artemia. In: Sorgeloos P, Bengston DA, Decleir W, Jaspers E (eds) Artemia research and its applications, vol 1., Morphology, genetics, strain characterization, toxicologyUniversa Press, Wetteren, pp 5–32

    Google Scholar 

  • Semmler H, Wanninger A, Hoeg JT, Scholtz G (2008) Immunocytochemical studies on the naupliar nervous system of Balanus improvisus (Crustacea, Cirripedia, Thecostraca). Arthropod Struct Dev 37(5):383–395

    Article  CAS  PubMed  Google Scholar 

  • Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186

    Article  Google Scholar 

  • Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40:221–243

    Article  PubMed  Google Scholar 

  • Stegner MEJ, Fritsch M, Richter S (2014a) The central complex in Crustacea. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 361–384

    Google Scholar 

  • Stegner MEJ, Brenneis G, Richter S (2014b) The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata. J Morphol 275(3):269–294

    Article  CAS  PubMed  Google Scholar 

  • Stemme T, Iliffe TM, von Reumont BM, Koenemann S, Harzsch S, Bicker G (2013) Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 13:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Strausfeld N (2012) Arthropod brains: evolution, functional elegance, and historical significance. Harvard University Press, Cambridge

    Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B Biol Sci 275(1633):369–376

    Article  Google Scholar 

  • Ungerer P, Eriksson BJ, Stollewerk A (2011a) Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans. Dev Biol 357(1):42–52

    Article  CAS  PubMed  Google Scholar 

  • Ungerer P, Geppert M, Wolff C (2011b) Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 6(1):28–44

    Article  PubMed  Google Scholar 

  • Vilpoux K, Sandeman R, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216(4):209–223

    Article  CAS  PubMed  Google Scholar 

  • Walley LJ (1969) Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Phil Trans R Soc B Biol Sci 256:183–279

    Article  Google Scholar 

  • Walossek D (1993) The upper Cambrian Rehbachiella kinnekullensis and the phylogeny of Branchiopoda and Crustacea. Foss Strat 32:1–202

    Google Scholar 

  • Walossek D, Müller KJ (1990) Upper Cambrian stem-lineage crustaceans and their bearing upon the position of Agnostus. Lethaia 23:409–427

    Article  Google Scholar 

  • Wheeler SR, Carrico ML, Wilson BA, Brown SJ, Skeath JB (2003) The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification. Development 130(18):4373–4381

    Article  CAS  PubMed  Google Scholar 

  • Wildt A, Goergen EM, Benton JL, Sandeman DC, Beltz BS (2004) Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J Exp Biol 207(21):3765–3774

    Article  CAS  PubMed  Google Scholar 

  • Williams T, Blachuta B, Hegna TA, Nagy LM (2012) Decoupling elongation and segmentation: Notch involvement in anostracan crustacean segmentation. Evol Dev 14(4):372–382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Georg Brenneis for his valuable spadework in immunolabeling some specimens. Thanks to George Hampson, Steve Aubrey, Christian Wirkner, Günther Jirikowski, Jonas Keiler, Bastian-Jesper Klußmann-Fricke, Martin Fritsch, and all the volunteers who helped collect cephalocarids. We thank Simone Bourgeois and the late Arthur Dutra from SeaLab, New Bedford, who kindly offered their laboratory and help during our collecting trips. We are grateful to Caterina Biffis, Steffen Harzsch, Joachim Haug, Günther Jirikowski, Carsten Wolff, and Gerhard Scholtz for their expert opinions. We appreciate the suggestions and comments of two anonymous reviewers and thank Lucy Cathrow for improving the English. Finally, we thank the German Science Foundation (DFG) for funding this project (RI 837/10-1,2) as part of the DFG priority program Deep Metazoan Phylogeny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. J. Stegner.

Additional information

Communicated by Andreas Schmidt-Rhaesa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegner, M.E.J., Richter, S. Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning. Zoomorphology 134, 183–209 (2015). https://doi.org/10.1007/s00435-014-0248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-014-0248-1

Keywords

Navigation