Skip to main content
Log in

Effect of 6-O-sulfonate hexosamine residue on anticoagulant activity of fully O-sulfonated glycosaminoglycans

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Intact and fully O[emsp4 ]-sulfonated glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, hyaluronan, heparan sulfate and heparin were chemically de-O-sulfonated on their hexosamine C-6 position (6-O[emsp4 ]-desulfonation) using N,O[emsp4 ]-bis(trimethylsilyl) acetamide. 1H NMR spectroscopy and chemical compositional analysis showed that the chemical de-O[emsp4 ]-sulfonation at C-6 position of hexosamine residues in both intact and fully O[emsp4 ]-sulfonated GAGs was completely achieved. Since GAGs and their derivatives are often used as anticoagulant agents, their anti-amidolytic activities were determined. While most of anticoagulant activity of fully O[emsp4 ]-sulfonated GAGs (FGAGs) and heparin disappeared following chemical 6-O[emsp4 ]-desulfonation, the activity of 6-O-desulfonated fully O[emsp4 ]-sulfonated dermatan sulfate (De6FDS) remained. This observation suggests the importance of the position of O-sulfonate groups for anti-coagulant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimata K, Okayama M, Oohira A, Suzuki S, Cytodifferentiation and proteoglycan biosynthesis. Mol Cell Biochem 1, 211–28 (1973).

    Google Scholar 

  2. Gallagher JT, Lyon M, Steward WP, Structure and function of heparan sulphate proteoglycans. Biochem J 236, 313–25 (1986).

    Google Scholar 

  3. Hascall VC, Midura RJ, Sorrell JM, Plaas AH, Immunology of chondroitin/dermatan sulfate. Adv Exp Med Biol 376, 205–16 (1995).

    Google Scholar 

  4. Hook M, Kjellen L, Johansson S, Cell-surface glycosaminoglycans. Annu Rev Biochem 53, 847–69 (1984).

    Google Scholar 

  5. Fraser JR, Laurent TC, Laurent UB, Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242, 27–33 (1997).

    Google Scholar 

  6. Casu B, Structural features and binding properties of chondroitin sulfates, dermatan sulfate, and heparan sulfate. Semin Thromb Hemost 17S, 9–14 (1991).

    Google Scholar 

  7. Linhardt RJ, Hileman RE, Dermatan sulfate as a potential therapeutic agent. Gen Pharmacol 26, 443–51 (1995).

    Google Scholar 

  8. Casu B, Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 43, 51–134 (1985).

    Google Scholar 

  9. Linhardt RJ, Toida T, Heparin oligosaccharides-New analogs development and applications, in Witczak ZB, Nieforth KA (eds) Carbohydrates as drugs, New York, Marcel Dekker, pp 277–341 (1997).

    Google Scholar 

  10. Gunay NS, Linhardt RJ, Heparinoids: structure, biological activities and therapeutic applications. Planta Med 65, 301–6 (1999).

    Google Scholar 

  11. Lindahl U, Lindolt K, Spillmann D, Kjellen L, More to “heparin” than anticoagulation. Thromb Res 75, 1–32 (1994).

    Google Scholar 

  12. Linhardt RJ, Wang HM, Ampofo SA, New methodologies in heparin tructure analysis and the generation of LMW heparins. Adv Exp Med Biol 313, 37–47 (1992).

    Google Scholar 

  13. Razi N, Feyzi E, Bjork I, Naggi A, Casu B, Lindahl U, Structural and functional properties of heparin analogues obtained by chemical sulphation of Escherichia coli K5 capsular polysaccharide. Biochem J 309, 465–72 (1995).

    Google Scholar 

  14. Amiral J, Antigens involved in heparin-induced thrombocytopenia. Semin Hematol 36, 7–11 (1999).

    Google Scholar 

  15. Horne MK III, Hutchison KI, Simultaneous binding of heparin and platelet factor-4 to platelets: further insights into the mechanism of heparin-induced thrombocytopenia. Am J Hematol 58, 24–30 (1998).

    Google Scholar 

  16. Girolami A, Low molecular weight heparins in clinical practice: unsolved or partially solved problems. Arch Inst Cardiol Mex 68, 69–76 (1998).

    Google Scholar 

  17. Maruyama T, Toida T, Imanari T, Yu G, Linhardt RJ, Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation. Carbohydr Res 306, 35–43 (1998).

    Google Scholar 

  18. Toida T, Maruyama T, Suzuki A, Imanari T, Linhardt RJ, Preparation and anticoagulant activity of fully O-sulphonated glycosaminoglycans. Int J Biol Macromol 26, 233–41 (1999).

    Google Scholar 

  19. Mikhailov D, Linhardt RJ, Mayo KM, NMR solution conformation of heparin-derived hexasaccharide. Biochem J 328, 51–61 (1997).

    Google Scholar 

  20. Qiu G, Toida T, Imanari T, Structural diversity of dermatan sulphate in procine dermis. Biol Pharm Bull 102, 721–6 (1997).

    Google Scholar 

  21. Pavao MS, Aiello KR, Werneck CC, Silva LC, Valenta AP, Mulloy B, Colwell NS, Tollefsen DM, Mourao PA, Highly sulfated dermatan sulfates from Ascidians. Structure versus anti-coagulant activity of these glycosaminoglycans. J Biol Chem 273, 27848–57 (1998).

    Google Scholar 

  22. Matsuo M, Takano R, Kamei-Hayashi K, Hara S, A novel regioselective desulfation of polysaccharide sulfates: Specific 6-O-desulfation with N,O-bis(trimethylsilyl)acetamide. Carbohydr Res 241, 209–15 (1993).

    Google Scholar 

  23. Linhardt RJ, in Varki A (ed.) Current Protocols in Molecular Biology, Vol. 2, Wiley Interscience, Boston, pp. 17.13.17–17.13.32 (1992).

    Google Scholar 

  24. Sanderson PN, Huckerby TN, Nieduszynski A, Conformational equilibria of alpha-L-iduronate residues in disaccharides derived from heparin. Biochem J 243, 175–81 (1987).

    Google Scholar 

  25. Sie P, Ofosu F, Fernandez F, Buchanan MR, Petitou M, Boneu B, Respective role of antithrombin III and heparin cofactor II in the in vitro anticoagulant effect of heparin and of various sulphated polysaccharides. Br J Haematol 64, 707–14 (1986).

    Google Scholar 

  26. Honda S, Suzuki S, Common conditions for high-performance liquid chromatographic microdetermination of aldoses, hexosamines, and sialic acids in glycoproteins. Anal Biochem 142, 167–74 (1984).

    Google Scholar 

  27. Colwell NS, Grupe MJ, Tollefsen DM, Amino acid residues of heparin cofactor II required for stimulation of thrombin inhibition by sulphated polyanions. Biochim Biophys Acta 1431, 148–56 (1999).

    Google Scholar 

  28. Edens RE, Al-Hakim A, Weiler JM, Rethwisch DG, Fareed J, Linhardt RJ, Gradient polyacrylamide gel electrophoresis for determination of molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci 81, 823–7 (1992).

    Google Scholar 

  29. Libersan D, Khalil A, Dagenais P, Quan E, Delorme F, Uzan A, Latour JG, The low molecular weight heparin, enoxaparin, limits infarct size at reperfusion in the dog. Cardiovasc Res 37, 656–66 (1998).

    Google Scholar 

  30. Toyoda H, Motoki H, Tanikawa M, Shinomiya K, Akiyama H, Imanari T, Determination of human urinary hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharides by high-performance liquid chromatography. J Chromtogr 565, 141–8 (1991).

    Google Scholar 

  31. Toida T, Toyoda H, Imanari T, High resolution proton nuclear magnetic resonance studies on chondroitin sulfates. Anal Sci 9, 53–8 (1993).

    Google Scholar 

  32. Nadkarni VD, Toida T, Van Gorp CL, Schubert RL, Weiler JM, Hansen KP, Caldwell EEO, Linhardt RJ, Preparation and biological activity of N-sulfonated chondroitin and dermatan sulfate derivatives. Carbohydr Res 290, 87–96 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toida, T., Suzuki, A., Nakajima, Ki. et al. Effect of 6-O-sulfonate hexosamine residue on anticoagulant activity of fully O-sulfonated glycosaminoglycans. Glycoconj J 17, 393–399 (2000). https://doi.org/10.1023/A:1007108131223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007108131223

Navigation