Skip to main content
Log in

One-pot analysis of sulfated glycosaminoglycans

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Routine isolation, estimation, and characterization of glycosaminoglycans (GAGs) is quite challenging. This is compounded by the fact that the analysis is technique-intensive and more often there will be a limitation on the quantity of GAGs available for various structural, functional and biological studies. In such a scenario, the sample which can be made available for estimation and elucidation of disaccharide composition and species composition as well remains a challenge. In the present study, we have determined the feasibility where isolated sulfated GAGs (sGAG) that is estimated by metachromasia is recovered for further analysis. sGAG-DMMB complex formed after estimation of sGAG by DMMB dye-binding assay was decomplexed and sGAGs were recovered. Recovered sGAGs were analysed by cellulose acetate membrane electrophoresis and taken up for disaccharide composition analysis by HPLC after fluorescent labelling. Good recovery of sGAGs after metachromasia was observed in all samples of varying levels of purity by this protocol. Further analysis using cellulose acetate membrane electrophoresis showed good separation between species of sGAGs namely chondroitin/dermatan sulfate and heparan sulfate, with comparatively lesser interference from hyaluronic acid, a non-sulfated GAG. Analysis of recovered sGAGs, specifically heparan sulfate by HPLC showed characteristic disaccharide composition akin to that of GAG obtained by the conventional protocol. Thus, in the present paper, we show that sGAG can be recovered in comparatively purer form after routine estimation and can be used for further analysis thus saving up on the precious sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schema for processing of various biological samples.
Fig. 2: sGAG recovery protocol.
Fig. 3: Spectral analysis of sGAG-DMMB complex and recovery of sGAG after decomplexation.
Fig. 4: Recovery of commercially available standard sGAGs after DMMB assay.
Fig. 5: Cellulose Acetate Membrane Electrophoresis of sGAGs from Biological samples.
Fig. 6: HS Disaccharide composition analysis of DG and CG-DX isolated from kidney.

Similar content being viewed by others

Abbreviations

CS:

Chondroitin sulfate

DS:

Dermatan sulfate

GAGs:

Glycosaminoglycans

HA:

Hyaluronic acid

HS:

Heparan sulfate

References

  1. Gowd, V., Gurukar, A., Chilkunda, N.D.: Glycosaminoglycan remodeling during diabetes and the role of dietary factors in their modulation. World J. Diabetes. 7, 67–73 (2016). https://doi.org/10.4239/wjd.v7.i4.67

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nagai, N., Habuchi, H., Sugaya, N., Nakamura, M., Imamura, T., Watanabe, H., Kimata, K.: Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice. Glycobiology. 23, 980–992 (2013). https://doi.org/10.1093/glycob/cwt037

    Article  CAS  PubMed  Google Scholar 

  3. Afratis, N., Gialeli, C., Nikitovic, D., Tsegenidis, T., Karousou, E., Theocharis, A.D., Pavão, M.S., Tzanakakis, G.N., Karamanos, N.K.: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279, 1177–1197 (2012). https://doi.org/10.1111/j.1742-4658.2012.08529.x

    Article  CAS  PubMed  Google Scholar 

  4. Reddy, G.K., Dhar, S.C.: Metabolism of glycosaminoglycans in tissues of adjuvant arthritic rat. Mol. Cell. Biochem. 106, 117–124 (1991)

    CAS  PubMed  Google Scholar 

  5. Papakonstantinou, E., Karakiulakis, G.: The “sweet” and “bitter” involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br. J. Pharmacol. 157, 1111–1127 (2009). https://doi.org/10.1111/j.1476-5381.2009.00279.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kiran, G., Srikanth, C.B., Salimath, P.V., Nandini, C.D.: Diet-induced hypercholesterolemia imparts structure-function changes to erythrocyte chondroitin sulphate/dermatan sulphate. J. Biochem. (Tokyo). 158, 217–224 (2015). https://doi.org/10.1093/jb/mvv037

    Article  CAS  Google Scholar 

  7. Srikanth, C.B., Salimath, P.V., Nandini, C.D.: Erythrocytes express chondroitin sulphate/dermatan sulphate, which undergoes quantitative changes during diabetes and mediate erythrocyte adhesion to extracellular matrix components. Biochimie. 94, 1347–1355 (2012). https://doi.org/10.1016/j.biochi.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Joladarashi, D., Salimath, P.V., Chilkunda, N.D.: Diabetes results in structural alteration of chondroitin sulfate/dermatan sulfate in the rat kidney: effects on the binding to extracellular matrix components. Glycobiology. 21, 960–972 (2011). https://doi.org/10.1093/glycob/cwr029

    Article  CAS  PubMed  Google Scholar 

  9. Lemmnitzer, K., Griesinger, H., Süß, R., Matheis, K., Schulz, M., Schiller, J.: Analysis of glycosaminoglycan oligosaccharides by combined HPTLC/MALDI-TOF MS: reduced silica gel thickness leads to improved spectral qualities and reduced side reactions. Chromatographia. 78, 1409–1413 (2015). https://doi.org/10.1007/s10337-015-2971-2

    Article  CAS  Google Scholar 

  10. Pomin, V.H., Sharp, J.S., Li, X., Wang, L., Prestegard, J.H.: Characterization of glycosaminoglycans by 15N NMR spectroscopy and in vivo isotopic labeling. Anal. Chem. 82, 4078–4088 (2010). https://doi.org/10.1021/ac1001383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osago, H., Shibata, T., Hara, N., Kuwata, S., Kono, M., Uchio, Y., Tsuchiya, M.: Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 467, 62–74 (2014). https://doi.org/10.1016/j.ab.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  12. Whiteman, P.: The quantitative measurement of Alcian blue-glycosaminoglycan complexes. Biochem. J. 131, 343–350 (1973)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Terry, D.E., Chopra, R.K., Ovenden, J., Anastassiades, T.P.: Differential use of Alcian blue and toluidine blue dyes for the quantification and isolation of anionic glycoconjugates from cell cultures: application to proteoglycans and a high-molecular-weight glycoprotein synthesized by articular chondrocytes. Anal. Biochem. 285, 211–219 (2000). https://doi.org/10.1006/abio.2000.4761

    Article  CAS  PubMed  Google Scholar 

  14. Farndale, R.W., Sayers, C.A., Barrett, A.J.: A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9, 247–248 (1982)

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama, M., Tanaka, H., Yoshihara, S., Endo, M.: A method for the identification of sulfated glycopeptide by two-dimensional electrophoresis on cellulose acetate membrane. J. Biochem. Biophys. Methods. 12, 239–246 (1986)

    Article  CAS  PubMed  Google Scholar 

  16. Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)

    Article  CAS  PubMed  Google Scholar 

  17. Whitley, C.B., Ridnour, M.D., Draper, K.A., Dutton, C.M., Neglia, J.P.: Diagnostic test for mucopolysaccharidosis. I. Direct method for quantifying excessive urinary glycosaminoglycan excretion. Clin. Chem. 35, 374–379 (1989)

    CAS  PubMed  Google Scholar 

  18. Chandrasekhar, S., Esterman, M.A., Hoffman, H.A.: Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal. Biochem. 161, 103–108 (1987)

    Article  CAS  PubMed  Google Scholar 

  19. Panin, G., Naia, S., Dall’Amico, R., Chiandetti, L., Zachello, F., Catassi, C., Felici, L., Coppa, G.V.: Simple spectrophotometric quantification of urinary excretion of glycosaminoglycan sulfates. Clin. Chem. 32, 2073–2076 (1986)

    CAS  PubMed  Google Scholar 

  20. Stone, J.E., Akhtar, N., Botchway, S., Pennock, C.A.: Interaction of 1,9-dimethylmethylene blue with glycosaminoglycans. Ann. Clin. Biochem. 31(Pt 2), 147–152 (1994). https://doi.org/10.1177/000456329403100206

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, C.H., Levenston, M.E.: Fact versus artifact: avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs. Eur. Cell. Mater. 29, 224–236; discussion 236 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiran, G., Nandini, C.D., Ramesh, H.P., Salimath, P.V.: Progression of early phase diabetic nephropathy in streptozotocin-induced diabetic rats: evaluation of various kidney-related parameters. Indian J. Exp. Biol. 50, 133–140 (2012)

    CAS  PubMed  Google Scholar 

  23. Lee, P.H.A., Trowbridge, J.M., Taylor, K.R., Morhenn, V.B., Gallo, R.L.: Dermatan sulfate proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment. J. Biol. Chem. 279, 48640–48646 (2004). https://doi.org/10.1074/jbc.M407241200

    Article  CAS  PubMed  Google Scholar 

  24. Su, G., Meyer, K., Nandini, C.D., Qiao, D., Salamat, S., Friedl, A.: Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am. J. Pathol. 168, 2014–2026 (2006). https://doi.org/10.2353/ajpath.2006.050800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbosa, I., Garcia, S., Barbier-Chassefière, V., Caruelle, J.-P., Martelly, I., Papy-García, D.: Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology. 13, 647–653 (2003). https://doi.org/10.1093/glycob/cwg082

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita, A., Sugahara, K.: Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with a fluorophore 2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exosequencing of oligosaccharides. Anal. Biochem. 269, 367–378 (1999). https://doi.org/10.1006/abio.1999.4027

    Article  CAS  PubMed  Google Scholar 

  27. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B.: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995). https://doi.org/10.1006/abio.1995.1468

    Article  CAS  PubMed  Google Scholar 

  28. Deakin, J.A., Lyon, M.: A simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology. 18, 483–491 (2008). https://doi.org/10.1093/glycob/cwn028

    Article  CAS  PubMed  Google Scholar 

  29. Mikami, T., Kitagawa, H.: Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj. J. (2016). https://doi.org/10.1007/s10719-016-9732-9

  30. Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446, 1030–1037 (2007). https://doi.org/10.1038/nature05817

    Article  CAS  PubMed  Google Scholar 

  31. Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K., Proudfoot, A.E.: Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005). https://doi.org/10.1146/annurev.biochem.72.121801.161747

    Article  CAS  PubMed  Google Scholar 

  32. Linhardt, R.J., Toida, T.: Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37, 431–438 (2004). https://doi.org/10.1021/ar030138x

    Article  CAS  PubMed  Google Scholar 

  33. Jackson, R.L., Busch, S.J., Cardin, A.D.: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–539 (1991)

    Article  CAS  PubMed  Google Scholar 

  34. Gatto, F., Volpi, N., Nilsson, H., Nookaew, I., Maruzzo, M., Roma, A., Johansson, M.E., Stierner, U., Lundstam, S., Basso, U., Nielsen, J.: Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016). https://doi.org/10.1016/j.celrep.2016.04.056

    Article  CAS  PubMed  Google Scholar 

  35. De Muro, P., Capobianco, G., Lepedda, A.J., Nieddu, G., Formato, M., Tram, N.H.Q., Idini, M., Dessole, F., Dessole, S.: Plasma PP13 and urinary GAGs/DGs as early markers of pre-eclampsia. Arch. Gynecol. Obstet. 294, 959–965 (2016). https://doi.org/10.1007/s00404-016-4111-0

    Article  PubMed  Google Scholar 

  36. De Muro, P., Lepedda, A.J., Nieddu, G., Idini, M., Tram Nguyen, H.Q., Lobina, O., Fresu, P., Formato, M.: Evaluation of early markers of nephropathy in patients with type 2 diabetes mellitus. Biochem. Res. Int. 2016, 7497614 (2016). https://doi.org/10.1155/2016/7497614

    PubMed  PubMed Central  Google Scholar 

  37. Popławska-Kita, A., Mierzejewska-Iwanowska, B., Szelachowska, M., Siewko, K., Nikołajuk, A., Kinalska, I., Górska, M.: Glycosaminoglycans urinary excretion as a marker of the early stages of diabetic nephropathy and the disease progression. Diabetes Metab. Res. Rev. 24, 310–317 (2008). https://doi.org/10.1002/dmrr.808

    Article  PubMed  Google Scholar 

  38. Bower, L., Warren, C., Manley, G.: Human serum and urine glycosaminoglycans in health and in patients with chronic renal failure. Ann. Clin. Biochem. 29(Pt 2), 190–195 (1992). https://doi.org/10.1177/000456329202900212

    Article  PubMed  Google Scholar 

  39. Lazzeri, M., Hurle, R., Casale, P., Buffi, N., Lughezzani, G., Fiorini, G., Peschechera, R., Pasini, L., Zandegiacomo, S., Benetti, A., Taverna, G., Guazzoni, G., Barbagli, G.: Managing chronic bladder diseases with the administration of exogenous glycosaminoglycans: an update on the evidence. Ther. Adv. Urol. 8, 91–99 (2016). https://doi.org/10.1177/1756287215621234

    Article  CAS  PubMed  Google Scholar 

  40. Pomin, V.H.: A dilemma in the glycosaminoglycan-based therapy: synthetic or naturally unique molecules? Med. Res. Rev. 35, 1195–1219 (2015). https://doi.org/10.1002/med.21356

    Article  CAS  PubMed  Google Scholar 

  41. Volpi, N.: Therapeutic applications of glycosaminoglycans. Curr. Med. Chem. 13, 1799–1810 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Templeton, D.M.: The basis and applicability of the dimethylmethylene blue binding assay for sulfated glycosaminoglycans. Connect. Tissue Res. 17, 23–32 (1988)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding of this study by SERB, DST, New Delhi (EMR/2015/000028) and Director for the keen interest. Shrikanth thanks CSIR for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

CBS and SJ did experiments, analysed data and wrote manuscript. CDN conceived the work, analysed data and wrote manuscript.

Corresponding author

Correspondence to Nandini D. Chilkunda.

Ethics declarations

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrikanth, C.B., Sanjana, J. & Chilkunda, N.D. One-pot analysis of sulfated glycosaminoglycans. Glycoconj J 35, 129–137 (2018). https://doi.org/10.1007/s10719-017-9809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9809-0

Keywords

Navigation