Skip to main content
Log in

Phosphorylation of Tau Alters Its Association with the Plasma Membrane

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The potential functions of the microtubule-associated protein tau have been expanded by the recent demonstration of its interaction with the plasma membrane. Since the association of tau with microtubules is regulated by phosphorylation, herein we examine whether or not the association of tau with the plasma membrane is also regulated by phosphorylation.

2. A range of tau isoforms migrating from 46 to 64 kDa was associated with crude particulate fractions derived from SH-SY-5Y human neuroblastoma cells, and were retained during the initial stages of plasma membrane purification. During the extensive washing utilized in purification of the plasma membrane, portions of each of these isoforms were depleted from the resultant purified membrane. Immunoblot analysis with phospho-dependent and -independent antibodies revealed selective depletion of phospho isoforms during membrane washing. This effect was more pronounced for the slowest-migrating (64-kDa) tau isoform.

3. This putative influence of phosphorylation on the association of tau with the plasma membrane was further probed by transfection of SH-SY-5Y human neuroblastoma cells with a tau construct that could associate with the plasma membrane but not with microtubules. Treatment with phorbol ester or calcium ionophore, both of which increased phospho-tau levels within the cytosol and plasma membrane, was accompanied by the dissociation of this tau construct from the membrane.

4. These data indicate that phosphorylation regulates the association with the plasma membrane. Dissociation from the membrane by phosphorylation may place tau at risk for hyperphosphorylation and ultimate PHF formation in a manner previously considered for tau dissociated from microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aizawa, H., Kawasaki, H., Murofushi, S., Kotani, K., Suzuki, and Sakai, H. (1988). Microtubule-binding domain of tau proteins. J. Biol. Chem. 263:7703-7707.

    Google Scholar 

  • Alonso, A. D., Grundke-Iqbal, I., Barra, H. S., and Iqbal, K. (1997). Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubuleassociated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. USA 94:298-303.

    Google Scholar 

  • Arias, C., Arrieta, I., and Tapia, R. (1995). ?-Amyloid peptide fragment 25-35 potentiates the calciumdependent release of excitatory amino acids from depolarized hippocampal slices. J. Neurosci. Res. 41:561-566.

    Google Scholar 

  • Arioka, M., Tsukamoto, M., Ishiguro, K., Kato, R., Sato, K., Imahori, K., and Uchida, T. (1993). Tau protein kinase-1 is involved in the regulation of the normal phosphorylation state of tau protein. J. Neurochem. 60:461-468.

    Google Scholar 

  • Baas, P. W., Pienkowski, T. P., Cimbalnik, K. A., Toyama, K., Bakalis, S., Ahmand, F. J., and Kosik, K. S. (1994). Tau confers drug-stability but cold-stability to microtubules in living cells. J. Cell Sci. 107:135-143.

    Google Scholar 

  • Baudier, J., and Cole, R. D. (1987). Phosphorylation of tau proteins to a state like that in Alzheimer's brain in chatalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J. Biol. Chem. 262:17577-17583.

    Google Scholar 

  • Binder, L. I., Frankfurter, A., and Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101:1371-1378.

    Google Scholar 

  • Black, M. M., Slaughter, T., Moshiach, M., Obrocka, M., and Fischer, I. (1996). Tau is enriched on dynamics microtubules in the distal region of growing axons. J. Neurosci. 16:3601-3619.

    Google Scholar 

  • Blanchard, B. J., Raghunandan, R. D., Roeder, H. M., and Ingram, V. M. (1994). Hyperphosphorylation of human tau by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: Relation to Alzheimer's disease. Biochem. Biophys. Res. Commun. 200:187-194.

    Google Scholar 

  • Boyce, J. J., and Shea, T. B. (1997). Phosphorylation events mediated by protein kinase C? and ? participate in the regulation of tau steady-state levels and generation of certain ''Alzheimer-like'' phospho-epitopes. Int. J. Dev. Neurosci. 15:295-307.

    Google Scholar 

  • Brambett, G. T., Goedert, M., Jakes, R., Merrick, S. E., Trojanowski, J. Q., and Lee, V. M.-Y. (1993). Abnormal tau phosphorylation at ser-396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089-1099.

    Google Scholar 

  • Brandt, R., Leger, J., and Lee, G. (1995). Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J. Cell Biol. 131:1327-1340.

    Google Scholar 

  • Brion, J. P., Guilleminot, J., Couchie, D., Flament, D. J., and Nunez, J. (1988). Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum. Neuroscience 25:139-146.

    Google Scholar 

  • Caceres, A., and Kosik, K. S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461-463.

    Google Scholar 

  • Caceres, A., Potrebic, S., and Kosik, K. S. (1991). The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J. Neurosci. 11:1515-1523.

    Google Scholar 

  • Cleveland, D. W., Hwo, S. Y., and Kirschner, M. W. (1977). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116:227-247.

    Google Scholar 

  • Cressman, C. M., and Shea, T. B. (1995). Hyperphosphorylation of tau and filopodial retraction following microinjection of protein kinase C catalytic subunits. J. Neurosci. Res. 42:648-656.

    Google Scholar 

  • Cressman, C. M., and Shea, T. B. (1999). The order of exposure of tau to signal transduction kinases alters the generation of ''AD-like'' phosphoepitopes. Cell. Mol. Neurobiol. 19:223-233.

    Google Scholar 

  • Cressman, C. M., Mercken, M. M., and Shea, T. B. (1995). Alteration in tau antigenicity and electrophoretic migration by PKC? under cell-free conditions. Neurosci. Res. Commun. 17:61-64.

    Google Scholar 

  • Dreschel, D. N., Hyman, A. A., Cobb, M. H., and Kirschner, M. W. (1992). Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3:1141-1154.

    Google Scholar 

  • Drubin, D. G., and Kirschner, M. W. (1986). Tau protein function in living cells. J. Cell Biol. 103:2739-2746.

    Google Scholar 

  • Ekinci, F. J., and Shea, T. B. (1999). Hyperphosphorylation of mitogen-activated protein kinase increases phospho-tau immunoreactivity within human neuroblastoma: Additive and synergistic influence of alteration of additional kinase activities. Cell. Mol. Neurobiol. 19:249-260.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.-Y. (1993). The abnormal phosphorylation of tau proteins at ser-202 in Alzheimer's disease recapitulates phosphorylation during development. Proc. Natl. Acad. Sci. USA 90:5066-5070.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Cohen, P., Vanmechelein, E., Vandermeeren, M., and Cras, P. (1994). Epitope mapped protein tau are dephosphorylated by protein phosphatase 2A-1. FEBS Lett. 312:195-199.

    Google Scholar 

  • Goedert, M., Spillantini, M. G., Jakes, R., Crowther, R. A., Vandermeeren, M., Probst, A., Gotz, J., Burki, K., and Cohen, P. (1995). Molecular dissection of the paired helical filament. Neurobiol. Aging 16:325-334.

    Google Scholar 

  • Gray, C. W., and Patel, A. J. (1995). Neurodegeneration mediated by glutamate and ?-amyloid peptide: A comparison and possible interaction. Brain Res. 691:169-179.

    Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., and Wisniewski, H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261:6084-6089.

    Google Scholar 

  • Hagestedt, T., Lichtenberg, B., Wille, H., Mandelkow, E.-M., and Mandelkow, E. (1989). Tau protein becomes long and stiff upon phosphorylation: Correlation between paracrystalline structure and degree of phosphorylation. J. Cell Biol. 109:1643-1651.

    Google Scholar 

  • Hartmann, H., Eckert, A., and Muller, W. E. (1993). ?-Amyloid protein amplifies calcium signalling in central neurons from the adult mouse. Biochem. Biophys. Res. Commun. 194:1216-1220.

    Google Scholar 

  • Himmler, A., Dreschel, D., Kirschner, M. W., and Martin, D. W. (1989). Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell. Biol. 9:1381-1388.

    Google Scholar 

  • Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G. Y., Shaikh, S. S., Wisniewski, H. M., Alafuzoff, I., and Winblad, B. (1986). Defective brain microtubule assembly in Alzheimer's disease. Lancet 2:421-426.

    Google Scholar 

  • Johnson, G. V. W., and Foley, V. G. (1993). Calpain-mediated proteolysis of microtubule-associated protein 2 (MAP2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. Res. 34:642-647.

    Google Scholar 

  • Johnson, G. V. W., Jope, R. S., and Binder, L. I. (1989). Proteolysis of tau by calpain. Biochem. Biophys. Res. Commun. 163:1505-1511.

    Google Scholar 

  • Kempf, M., Clement, A., Faissner, A., Lee, G., and Brandt, R. (1996). Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. J. Neurosci. 16:5583-5592.

    Google Scholar 

  • Kosik, K. S. (1997). Tau: Structure and function. In Avila, J., Brandt, R., and Kosik, K. S. (eds.), Brain Microtubule Associated Proteins, Harwood Academic, Amsterdam, pp. 43-52.

    Google Scholar 

  • Leger, J. G., Brandt, R., and Lee, G. (1994). Identification of tau protein regions required for process formation in PC12 cells. J. Cell Sci. 340:3-12.

    Google Scholar 

  • Lee, G., Neve, R. L., and Kosik, K. S. (1989). The microtubule binding domain of tau protein. Neuron 2:1615-1624.

    Google Scholar 

  • Lee, G., Newman, S. T., Gard, D. L., Band, H., and Panchamoorthy, G. (1998). Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci. 111:3167-3177.

    Google Scholar 

  • Litersky, J. M., Scott, C. W., and Johnson, G. V. W. (1993). Phosphorylation, calpain proteolysis and tubulin binding of recombinant tau isoforms. Brain Res. 604:32-40.

    Google Scholar 

  • Mandall, J. W., and Banker, G. A. (1996). Microtubule-associated proteins, phosphorylation gradients and the establishment of neuronal polarity. Perspect. Dev. Neurobiol. 4:125-135.

    Google Scholar 

  • Mandelkow, E.-M., and Mandelkow, E. (1998). Tau in Alzheimer's disease. Trends Cell Biol. 8:425-427.

    Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992). ?-Amyloid peptides destabilized calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376-389.

    Google Scholar 

  • Mattson, M. P., Tomaselli, K. J., and Rydel, R. E. (1993). Calcium-destabilizing and neurodegenerative effects of aggregated ?-amyloid peptide are attenuated by basic FGF. Brain Res. 621:35-49.

    Google Scholar 

  • Raghunandan, R., and Ingram, V. M. (1995). Hyperphosphorylation of the cytoskeletal protein tau by the MAP-kinase PK40erk: Regulation by prior phosphorylation with cAMP-dependent protein kinase A. Biochem. Biophys. Res. Commun. 215:1056-1066.

    Google Scholar 

  • Sengupta, A., Wu, Q., Grunde-Iqbal, I., Iqbal, K., and Singh, T. J. (1997). Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau cdk5. Mol. Cell. Biochem. 167:99-105.

    Google Scholar 

  • Shea, T. B. (1996). Induction of lysosomal abnormalities and tau hyperphosphorylation in human neuroblastoma cells by colchicine and okadaic acid: Evidence that microtubule disruption contributes to Alzheimer neurodegeneration. Neurosci. Res. Commun. 19:27-36.

    Google Scholar 

  • Shea, T. B. (1997). Phospholipids alter tau conformation, phosphorylation, proteolysis, and association with microtubules: Implication for tau function under normal and degenerative conditions. J. Neurosci. Res. 50:114-122.

    Google Scholar 

  • Shea, T. B., and Beermann, M. L. (1994). Respective roles of neurofilaments, microtubules, MAP1B and tau in the outgrowth and stabilization of axonal neurites. Mol. Biol. Cell. 5:863-875.

    Google Scholar 

  • Shea, T. B., Beermann, M. L., Nixon, R. A., and Fischer, I. (1992). Microtubule-associated protein tau is required for axonal elaboration by neuroblastoma cells. J. Neurosci. Res. 32:363-374.

    Google Scholar 

  • Shea, T. B., Spencer, M. I., Beermann, M. L., Cressman, C. M., and Nixon, R. A. (1996). Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: Involvement of calpainmediated hydrolysis of protein kinase C. J. Neurochem. 66:1539-1549.

    Google Scholar 

  • Shea, T. B., Parabhakar, S., and Ekinci, F. J. (1998). ?-Amyloid and ionophore-mediated calcium influx evoke neurodegeneration by distinct intracellular pathways: Differential involvement of the calpain/ protein kinase C system. J. Neurosci. Res. 49:759-768.

    Google Scholar 

  • Singh, T. J., Zaidi, T., Grunde-Iqbal, I., and Iqbal, K. (1994a). Modulation of GSK-3 catalyzed phosphorylation of microtubule-associated protein tau by non-proline dependent protein kinases. FEBS Lett. 358:4-8.

    Google Scholar 

  • Singh, T. J., Haque, N., Grunde-Iqbal, I., and Iqbal, K. (1994b). Rapid Alzheimer-like phosphorylation of tau by the synergistic actions of non-proline dependent kinase and GSK-3. FEBS Lett. 358:267-272.

    Google Scholar 

  • Steiner, B., Mandelkow, E.-M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., Mieskes, G., Soling, H. D., Dreschel, D., Kirschner, M. W., Goedert, M., and Mandelkow, E. (1990). Phosphorylation of microtubule-associated protein tau: Identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539-3544.

    Google Scholar 

  • Takemura, R., Okabe, S., Umeyama, T., Kanai, Y., Cowan, N. I., and Hirokawa, N. (1992). Increased microtubule stability and alpha-tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J. Cell Sci. 103:953-964.

    Google Scholar 

  • Trojanowski, J. Q., Schuck, T., Schmidt, M. L., and Lee, V. M.-Y. (1989). Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37:209-215.

    Google Scholar 

  • Ueda, K., Shinohara, S., Yagami, T., Asakura, K., and Kawasaki, K. (1997). Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J. Neurochem. 68:265-271.

    Google Scholar 

  • Yang, L.-S., and Ksiezak-Reding, H. (1995). Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments. Eur. J. Biochem. 233:9-17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekinci, F.J., Shea, T.B. Phosphorylation of Tau Alters Its Association with the Plasma Membrane. Cell Mol Neurobiol 20, 497–508 (2000). https://doi.org/10.1023/A:1007075115574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007075115574

Navigation