Skip to main content

Advertisement

Log in

Phosphorylation of Truncated Tau Promotes Abnormal Native Tau Pathology and Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Abnormal posttranslational modifications of tau play important roles in mediating neurodegeneration in tauopathies including Alzheimer’s disease. Both phosphorylation and truncation are implicated in the pathogenesis of tauopathies. However, whether phosphorylation aggravates truncated tau-induced pathology and neurodegeneration remains elusive. Here, we construct different tau fragments cleaved by delta secretase, with either phosphorylation or non-phosphorylation mimic mutations, and evaluate the contributions of phosphorylation to truncated tau-induced pathological and behavioral alterations in vitro and in vivo through biochemical methods including detergent insoluble tau extraction, western blot, immunofluorescence, flow cytometry, and behavior tests. Our results show that the self-aggregation of phospho-truncated tau is significantly influenced by the domain it contains. N-terminal inhibits, proline-rich domain promotes, and C-terminus have no impact on phospho-truncated tau aggregation. Phosphorylation of truncated tau1-368, which contains the microtubule-binding repeat domain and the proline-rich domain, induces endogenous tau phosphorylation and aggregation. In vivo, phospho-tau1-368 but not non-phospho-tau1-368 leads to a decrease in body weight of C57BL/6 J mice. Intriguingly, although tau1-368-induced anxiety behavior in C57BL/6 J mice is phosphorylation-independent, the recognition memory of mice is impaired by phospho-tau1-368, but not by non-phospho-tau1-368. Immunofluorescence staining shows that overexpressing phospho-tau1-368 results in neuronal loss and gliosis in the hippocampus, while the transmission of tau1-368 is phosphorylation-independent as revealed by the flow cytometry results in vitro and immunofluorescence staining in vivo. Our findings indicate that phosphorylation of truncated tau significantly fosters endogenous tau pathology and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goedert M (2004) Tau protein and neurodegeneration. Semin Cell Dev Biol 15(1):45–49

    Article  CAS  PubMed  Google Scholar 

  3. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378

    Article  CAS  PubMed  Google Scholar 

  4. Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K, Urlaub H, Mandelkow E, Zweckstetter M (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A 112(24):7501–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, Laskowski PR, MacKenzie D, Kamath T, Commins C et al: 2018 Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO journal, 37(7).

  8. Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M (2013) “Prion-like” templated misfolding in tauopathies. Brain pathology (Zurich, Switzerland) 23(3):342–349

    Article  CAS  Google Scholar 

  9. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M et al (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110(23):9535–9540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miao J, Shi R, Li L, Chen F, Zhou Y, Tung YC, Hu W, Gong CX, Iqbal K, Liu F (2019) Pathological tau from Alzheimer’s brain induces site-specific hyperphosphorylation and SDS- and reducing agent-resistant aggregation of tau in vivo. Front Aging Neurosci 11:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK et al (2015) Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun 6:8490

    Article  CAS  PubMed  Google Scholar 

  13. Katsinelos T, Zeitler M, Dimou E, Karakatsani A, Muller HM, Nachman E, Steringer JP (2018) Ruiz de Almodovar C, Nickel W, Jahn TR: Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep 23(7):2039–2055

    Article  CAS  PubMed  Google Scholar 

  14. Rauch JN, Luna G, Guzman E, Audouard M, Challis C, Sibih YE, Leshuk C, Hernandez I, Wegmann S, Hyman BT et al (2020) LRP1 is a master regulator of tau uptake and spread. Nature 580(7803):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787

    Article  CAS  PubMed  Google Scholar 

  16. Quinn JP, Corbett NJ, Kellett KAB, Hooper NM (2018) Tau proteolysis in the pathogenesis of tauopathies: neurotoxic fragments and novel biomarkers. J Alzheimer’s Dis : JAD 63(1):13–33

    Article  CAS  Google Scholar 

  17. Carlomagno Y, Manne S, DeTure M, Prudencio M, Zhang YJ, Hanna Al-Shaikh R, Dunmore JA, Daughrity LM, Song Y, Castanedes-Casey M et al (2021) The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Rep 34(11):108843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al-Hilaly YK, Foster BE, Biasetti L, Lutter L, Pollack SJ, Rickard JE, Storey JMD, Harrington CR, Xue WF, Wischik CM et al (2020) Tau (297–391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain. FEBS Lett 594(5):944–950

    Article  CAS  PubMed  Google Scholar 

  19. Vogels T, Vargová G, Brezováková V, Quint WH, Hromádka T (2020) Viral delivery of non-mutated human truncated tau to neurons recapitulates key features of human tauopathy in wild-type mice. J Alzheimer’s Dis : JAD 77(2):551–568

    Article  CAS  PubMed  Google Scholar 

  20. Pollack SJ, Trigg J, Khanom T, Biasetti L, Marshall KE, Al-Hilaly YK, Rickard JE, Harrington CR, Wischik CM, Serpell LC (2020) Paired helical filament-forming region of tau (297–391) influences endogenous tau protein and accumulates in acidic compartments in human neuronal cells. J Mol Biol 432(17):4891–4907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130(1):206–213

    Article  CAS  PubMed  Google Scholar 

  22. Gu J, Xu W, Jin N, Li L, Zhou Y, Chu D, Gong CX, Iqbal K, Liu F (2020) Truncation of Tau selectively facilitates its pathological activities. J Biol Chem 295(40):13812–13828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, Seyfried NT, Hu WT, Liu Z, Wang JZ et al (2014) Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med 20(11):1254–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlegel K, Awwad K, Heym RG, Holzinger D, Doell A, Barghorn S, Jahn TR, Klein C, Mordashova Y, Schulz M et al (2019) N368-Tau fragments generated by legumain are detected only in trace amount in the insoluble Tau aggregates isolated from AD brain. Acta Neuropathol Commun 7(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  25. Behrendt A, Bichmann M, Ercan-Herbst E, Haberkant P, Schöndorf DC, Wolf M, Fahim SA, Murolo E, Ehrnhoefer DE (2019) Asparagine endopeptidase cleaves tau at N167 after uptake into microglia. Neurobiol Dis 130:104518

    Article  CAS  PubMed  Google Scholar 

  26. Jankowsky JL, Zheng H (2017) Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wegmann S, Bennett RE, Delorme L, Robbins AB, Hu M, McKenzie D, Kirk MJ, Schiantarelli J, Tunio N, Amaral AC et al: 2019 Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv , 5(6):eaaw6404.

  28. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li L, Jiang Y, Hu W, Tung YC, Dai C, Chu D, Gong CX, Iqbal K, Liu F: 2019 Pathological alterations of Tau in Alzheimer's disease and 3xTg-AD mouse brains. Molecular neurobiology .

  30. Gamblin TC, Berry RW, Binder LI (2003) Tau polymerization: role of the amino terminus. Biochemistry 42(7):2252–2257

    Article  CAS  PubMed  Google Scholar 

  31. Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H et al: 2018 Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife , 7.

  32. Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI (2015) Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem 290(24):14893–14903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J : off publ Fed Am Soc Exp Biol 26(5):1946–1959

    Article  CAS  Google Scholar 

  34. Braak H, Braak E: 1995 Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of aging , 16(3):271–278; discussion 278–284.

  35. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chastagner P, Loria F, Vargas JY, Tois J (2020) M ID, Okafo G, Brou C, Zurzolo C: Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol Med 12(12):e12025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, McCormick WC, Bowen JD, Larson EB (1999) Anxiety of Alzheimer’s disease: prevalence, and comorbidity. J Gerontol A Biol Sci Med Sci 54(7):M348-352

    Article  CAS  PubMed  Google Scholar 

  38. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  39. Largo-Barrientos P, Apóstolo N, Creemers E, Callaerts-Vegh Z, Swerts J, Davies C, McInnes J, Wierda K, De Strooper B, Spires-Jones T et al:2021 Lowering synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron.

  40. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative Diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  41. Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293

    Article  CAS  PubMed  Google Scholar 

  42. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Novak P, Cehlar O, Skrabana R, Novak M (2018) Tau conformation as a target for disease-modifying therapy: the role of truncation. J Alzheimer’s Dis : JAD 64(s1):S535-s546

    Article  CAS  PubMed  Google Scholar 

  44. Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN et al:2020 Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell.

  45. Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, Fatou B, Guise AJ, Cheng L, Takeda S et al: 2020 Tau PTM profiles identify patient heterogeneity and stages of Alzheimer's disease. Cell .

  46. Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, De Los Santos MB, Klickstein N, Corjuc DL, Corjuc BT et al (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 26(8):1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Shi R, Gu J, Tung YC, Zhou Y, Zhou D, Wu R, Chu D, Jin N, Deng K et al (2021) Alzheimer’s disease brain contains tau fractions with differential prion-like activities. Acta Neuropathol Commun 9(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu R, Li L, Shi R, Zhou Y, Jin N, Gu J, Tung YC, Liu F, Chu D (2021) Dephosphorylation passivates the seeding activity of oligomeric tau derived from Alzheimer’s brain. Front Mol Neurosci 14:631833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Zhou Q, Liu E, Du H, Yu N, Yu H, Wang W, Li M, Weng Y, Gao Y et al (2022) Alzheimer-like tau accumulation in dentate gyrus mossy cells induces spatial cognitive deficits by disrupting multiple memory-related signaling and inhibiting local neural circuit. Aging Cell 21(5):e13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210

    Article  CAS  PubMed  Google Scholar 

  51. Albanese E, Taylor C, Siervo M, Stewart R, Prince MJ, Acosta D (2013) Dementia severity and weight loss a comparison across eight cohorts The 10/66 study. Alzheimer’s dement J Alzheimer’s Assoc 9(6):649–656

    Article  Google Scholar 

  52. Vloeberghs E, Van Dam D, Franck F, Serroyen J, Geert M, Staufenbiel M, De Deyn PP (2008) Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model. Behav Neurosci 122(3):491–497

    Article  PubMed  Google Scholar 

  53. Knight EM, Verkhratsky A, Luckman SM, Allan SM, Lawrence CB (2012) Hypermetabolism in a triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 33(1):187–193

    Article  CAS  PubMed  Google Scholar 

  54. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, Roubenoff R, Auerbach S, DeCarli C, Wolf PA et al (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302(23):2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Engin E, Smith KS, Gao Y, Nagy D, Foster RA, Tsvetkov E, Keist R, Crestani F, Fritschy JM, Bolshakov VY et al: 2016 Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife , 5:e14120.

  56. Luna VM, Anacker C, Burghardt NS, Khandaker H, Andreu V, Millette A, Leary P, Ravenelle R, Jimenez JC, Mastrodonato A et al (2019) Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science (New York, NY) 364(6440):578–583

    Article  CAS  Google Scholar 

  57. Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873

    Article  PubMed  Google Scholar 

  58. Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, Karatsu Y, Iwamoto Y, Miyakawa T, Suhara T et al (2011) P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS ONE 6(6):e21050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Medical Subcenter of HUST Analytical & Testing Center for data acquisition.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31929002, 82071440, and 92049107), grants from the Innovative Research Groups of the National Natural Science Foundation of China (81721005), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20210324141405014), Guangdong Basic and Applied Basic Research Foundation (2020B1515120017), and the Academic Frontier Youth Team Project to Xiaochuan Wang from Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Xiaochuan Wang designed all experiments and organized all results, including the writing of the manuscript. Longfei Li and Yanli Jiang planned and performed all experiments and participated in the writing of the manuscript. Gang Wu, Yacoubou Abdoul Razak Mahaman, Dan Ke, and Qun Wang assisted with the manuscript preparation. Bin Zhang and Hong-Lian Li analyzed the data. Jian-Zhi Wang and Rong Liu analyzed and interpreted the data.

Corresponding authors

Correspondence to Rong Liu or Xiaochuan Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Data Availability

All data used in this study are available from the corresponding authors on reasonable request.

Ethics Approval

All animal handling and uses were abode by the protocol approved by the Institutional Animal Care and Use Committee of Tongji medical school of Huazhong university of science and technology.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3.02 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jiang, Y., Wu, G. et al. Phosphorylation of Truncated Tau Promotes Abnormal Native Tau Pathology and Neurodegeneration. Mol Neurobiol 59, 6183–6199 (2022). https://doi.org/10.1007/s12035-022-02972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02972-7

Keywords

Navigation