Skip to main content
Log in

Hydrogen Isotope Exchange Reactions in an Electrical Discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Hydrogen isotope exchange reactions occurring in (H2O, D2)or (D2O, H2) reacting system under a DC electricaldischarge were investigated using spectroscopic methods such asFourier-transform infrared (FTIR) and plasma emission spectroscopy(PES). The progress of the reactions was determined by real-time measurementof the IR absorbance of HDO molecule, a major product of the reaction. Theprogress of the reaction was studied as a function of the temperature, thecurrent density, and the composition of the reactants, while the pressure ofthe system was maintained at approximately 67 mbar. The results revealedthat the discharge method was far more effective in facilating the exchangereaction than was the conventional catalytic method. The (H2O, D2)system also generated a significant amount of D2O besides HDO andHD as the ratio of D2 to H2O was increased. Thetransient species of the system, such as H or D atoms, were monitored duringthe discharge using emission spectroscopy. The analysis of the final products by mass spectroscopy confirmed that neither H2 nor O2was among the major products of the system in the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. R. Hochstin, Kinetic Processes in Gases and Plasma, Academic Press, New York (1969).

    Google Scholar 

  2. B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control, Springer-Verlag, Berlin (1993).

    Google Scholar 

  3. B. D. Blaustein, Chemical Reactions in Electrical Discharge, Advances in Chemistry Series, No. 80, ACS, Washington, D.C. (1967).

    Google Scholar 

  4. J. Lawton and F. J. Weinberg, Electrical Aspects of Combination, Clarendon Press, Oxford (1969).

    Google Scholar 

  5. J. R. Hollahan and A. T. Bell, Techniques and Applications of Plasma Chemistry, Wiley, New York (1974).

    Google Scholar 

  6. G. Vasaru, Tritium Isotope Separation, CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  7. W. J. Holtslander, T. S. Drolet, and R. V. Osborne, Handling of Tritium-Bearing Wastes, Tech, Rept. Ser. No. 203, 57 (1981).

  8. J. P. Butler, J. H. Rolston, and W. H. Stevens, Proceedings of the Symposium on Separation of Hydrogen Isotopes, H. K. Rae, Ed., ACS Symposium Series, Washington, D.C. (1978), p. 93.

  9. J. H. Rolston, J. den Hartog, and J. P. Butler, J. Phys. Chem. 80, 1064 (1976).

    Google Scholar 

  10. M. Hammerli, W. H. Stevens, and J. P. Butler, Proceedings of the Symposium on Separation of Hydrogen Isotopes H. K. Rae, Ed., ACS Symposium Series, Washington, D.C. (1978), p. 93.

  11. M. Hammerli, J. P. Mistan, and J. Olmstead, J. Electrochem. Soc. 117, 751 (1970).

    Google Scholar 

  12. V. M. Donelly, D. L. Flamm, and G. Collins, J. Vacuum Sci. Technol. 21, 817 (1982).

    Google Scholar 

  13. R. A. Gottscho, G. P. Davis, and R. H. Burton, Plasma Chem. Plasma Process. 3, 193 (1983).

    Google Scholar 

  14. D. R. Crosley, J. Chem. Educ. 59, 446 (1982).

    Google Scholar 

  15. B. Kulakowska-Pawlak and W. Zyrnicki, Thin Solid Films 266, 8 (1995).

    Google Scholar 

  16. K. Nishkawa et al., Jpn. J. Appl. Phys. 34, 3731 (1995).

    Google Scholar 

  17. F. W. Breitbarth, D. Berg, K. Dumke, and H. J. Tiller, Plasma Phys. Plasma Process. 17, 39 (1997).

    Google Scholar 

  18. L. T. Hsieh, W. J. Lee, C. Y. Chen, M. B. Chang, and H. C. Chang, Plasma Chem. Plasma Process. 18, 215 (1998).

    Google Scholar 

  19. J. W. Cleland and D. W. Hess, Conference on Emerging Technologies in Materials, Minneapolis, Minnesota, Aug. (1987); Plasma Chem. Plasma Process. 7, 379 (1987).

  20. M. M. Shahin, J. Chem. Phys. 56, 2600 (1966).

    Google Scholar 

  21. P. H. Ratliff and W. W. Harrison, Appl. Spec. 49, 863 (1995).

    Google Scholar 

  22. V. M. Donelly, Plasma Diagnostics, O. Auciello and D. L. Flamm, Eds., Vol. 1, Chap. 1, Academic Press, New York (1989), p. 1.

    Google Scholar 

  23. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Wiley, New York (1986).

    Google Scholar 

  24. P. W. Atkins, Physical Chemistry, 5th edn., Oxford, New York (1994).

  25. G. Herzberg, Molecular Spectra and Molecular Structure: II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Google Scholar 

  26. C. J. Pouchert, The Aldrich Library of FT-IR Spectra, Vol. 3, Aldrich Chemical Co., Milwaukee, Wisconsin (1988).

    Google Scholar 

  27. B. R. Stallard, L. H. Espinoza, R. K. Rowa, M. J. Garcia, and T. M. Niemczyk, J. Electrochem. Soc. 142, 2777 (1995).

    Google Scholar 

  28. V. S. Gathen and H. F. Dobele, Plasma Chem. Plasma Process. 16, 461 (1996).

    Google Scholar 

  29. A. N. Goyette, W. B. Jameson, L. W. Anderson, and J. E. Lawier, J. Phys. D: Appl. Phys. 29, 1197 (1996).

    Google Scholar 

  30. H. N. Chu, E. A. Den Hartog, J. Jacobs, L. W. Anderson, M. G. Lagally, and J. E. Lawler, Phys. Rev. A 44, 3796 (1991).

    Google Scholar 

  31. G. H. Dieke, The Hydrogen Molecular Wavelength Tables of Gerhard Heinrich Dieke, H. M. Crosswhite, Ed., Wiley (Interscience), New York (1972).

    Google Scholar 

  32. B. Sun, M. Sato, and J. S. Clements, J. Electrostatics. 39, 189 (1997).

    Google Scholar 

  33. F. Kaufman, Chemical Reactions in Electrical Discharge, Advances in Chemistry Series, No. 80, ACS, Washington, D.C. (1967), p. 29.

    Google Scholar 

  34. F. P. Del Greco and F. Kaufman, Discussions Faraday Soc. 33, 128 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Park, Y.D. & Lee, W.M. Hydrogen Isotope Exchange Reactions in an Electrical Discharge. Plasma Chemistry and Plasma Processing 20, 259–275 (2000). https://doi.org/10.1023/A:1007073224543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007073224543

Navigation