Skip to main content
Log in

A light and electron microscopic study of GAT-1 in the monkey basal ganglia

  • Published:
Journal of Neurocytology

Abstract

The distribution of the GABA transporter GAT-1 was studied by immunocytochemistry and electron microscopy in the monkey basal ganglia. Dense staining was observed in the globus pallidus externa and interna, intermediate in the subthalamic nucleus, and substantia nigra, and light staining in the caudate nucleus and putamen. Staining was observed in axon terminals, but not cell bodies. Electron microscopy showed that the GAT-1 positive axon terminals formed symmetrical synapses, suggesting that they were the terminals of GABAergic neurons. Comparison of areas high in GAT-1 protein with that of GABA showed a good correlation between the density in neuropil staining for GAT-1, and that of GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin, R. L., Young, A. B. & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends in Neurosciences 12, 366–375.

    PubMed  Google Scholar 

  • Borden, L. A. (1996) GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochemistry International 29, 335–356.

    PubMed  Google Scholar 

  • Delong, M. R. (1990) Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences 13, 281–285.

    PubMed  Google Scholar 

  • Divac, I., Fonnum, F. & Storm-mathisen, J. (1977) High affinity uptake in terminals of corticostriatal axons. Nature 266, 377–378.

    PubMed  Google Scholar 

  • Graybiel, A. M. & Ragsdale, C. W. (1983) In Chemical Neuroanatomy (edited by EMSON, C. P.) pp. 427–504. Raven Press.

  • Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A. & Kanner, B. I. (1990) Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306.

    PubMed  Google Scholar 

  • Kung, L., Force, M., Chute, D. J. & Roberts, R.C. (1998) Immunocytochemical localization of tyrosine hydroxylase in the human striatum: A postmortem ultrastructural study. Journal of Comparative Neurology 390, 52–62.

    PubMed  Google Scholar 

  • Liu, Q. R., Mandiyan, S., Nelson, H. & Nelson, N. (1992) A family of genes encoding neurotransmitter transporters. Proceedings of the National Academy of Science USA 89, 6639–6643.

    Google Scholar 

  • Lu, X. R., Ong, W. Y., Mackie, K. A light and electron microscopic study of the CB1 cannabinoid receptor in the monkey basal forebrain. Journal of J. Neurocytology, submitted.

  • Mager, S., Neave, J., Quick, M., Labarca, C., Davidson, M. & Lester H. A. (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10, 177–188.

    PubMed  Google Scholar 

  • Nakanishi, H., Kita, H. & Kitai, S. T. (1987) Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: Electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research 437, 45–55.

    PubMed  Google Scholar 

  • Nelson, H., Mandiyan, S. & Nelson, N. (1990) Cloning of the human brainGABAtransporter. FEBS Letter 269, 181–184.

    Google Scholar 

  • Ong, W. Y., Yeo, T. T., Balcar, V. J. & Garey L. J. (1998) A light and electron microscopic study of GAT-1 positive cells in the cerebral cortex of man and monkey. Journal of Neurocytology 27, 719–730.

    PubMed  Google Scholar 

  • Radian, R., Bendahan, A. & Kanner, B. I. (1986) Purification and identification of the functional sodiumand chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. Journal of Biological Chemistry 261, 15437–15441.

    Google Scholar 

  • Shink, E. & Smith, Y. (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA-and glutamatecontaining terminals in the squirrel monkey. Journal of Comparative Neurology 358, 119–141.

    PubMed  Google Scholar 

  • Smith, Y., Bevan, M. D., Shink, E. & Bolam, J. P. (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86, 353–387.

    PubMed  Google Scholar 

  • Smith, Y. & Parent, A. (1988) Neurons of the subthalamic nucleus in primates display glutamate but notGABA immunoreactivity. Brain Research 453, 353–356.

    PubMed  Google Scholar 

  • Smith, Y., Parent, A., Seguela, P. & Descarries, L. (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). Journal of Comparative Neurology 259, 50–64.

    PubMed  Google Scholar 

  • Spencer, H. J. (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: Evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Research 102, 91–101.

    PubMed  Google Scholar 

  • Yasumi, M., Sato, K., Shimada, S., Nishimura, M. & Tohyama, M. (1997) Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: Comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Molecular Brain Research 44, 205–218.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ong, W. A light and electron microscopic study of GAT-1 in the monkey basal ganglia. J Neurocytol 28, 1053–1061 (1999). https://doi.org/10.1023/A:1007056608820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007056608820

Keywords

Navigation