Skip to main content
Log in

Nuclease activity of mixed ligand complexes of copper(II) with heteroaromatic derivatives and picoline

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New picoline adducts with carbamic acid [(furan-2-yl)methylene]hydrazide–CuII (CFMH) (1); thiocarbamic acid [(furan-2-yl)methylene]hydrazide–CuII (TFMH) (2); carbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (CFEH) (3), thiocarbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (TFEH) (4); carbamic acid [(thiophene-2-yl) methylene]hydrazide–CuII (CTMH) (5), thiocarbamic acid [(thiophene-2-yl)methylene]hydrazide–CuII (TTMH) (6), carbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (CTEH) (7), thiocarbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (TTEH) (8) have been prepared and characterized by analytical, i.r., electronic, e.s.r. and c.v. spectral data. The electronic spectra suggest distorted octahedral geometry for all the picoline adducts. E.s.r. g values lie between 2.251–2.286 at l.n.t. All the adducts undergo a quasi-reversible one-electron reduction in the range +0.47 to +0.51 V versus s.c.e., attributable to the CuIII/CuII redox couple. The electron transfer is much faster in the semicarbazone complexes than in the thiosemicarbazone complexes. All adducts showed increased nuclease activity in the presence of oxidant; the nuclease activity is compared with that of the parent copper(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Helleman and C.C. Stock, J. Biol. Chem., 125, 771 (1983).

    Google Scholar 

  2. N. Hashino, Y. Fukuda and K. Sone, Transition Met. Chem., 4, 183 (1979).

    Google Scholar 

  3. G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press, Oxford 1987, Vol 5 pp 687 and 725; Vol 6, p 494.

    Google Scholar 

  4. J. Costamagna, J. Vargas, R. Latorse, A. Alvarado and G. Mena, Coord. Chem. Rev., 119, 67 (1992).

    Google Scholar 

  5. S.E. Livingstone, Cancer Forum, 15, 144 (1978).

    Google Scholar 

  6. D.R. Williams, Chem. Rev., 72, 203 (1972).

    PubMed  Google Scholar 

  7. R.B. Martin and Y.H. Marian, in H. Sigel (Ed.), Metal ions in Biological Systems, Marcel Dekker Inc., New York, 1987 Vol 21, pp 57-124.

    Google Scholar 

  8. R.R. Joshi and K.N. Ganesh, Biochem. Biophys. Res. Commun., 182, 588 (1992).

    PubMed  Google Scholar 

  9. M.J. Levy, Biochemistry, 27, 2647 (1988).

    PubMed  Google Scholar 

  10. S.H. Chiou, J. Biochem., 94, 1259 (1983).

    PubMed  Google Scholar 

  11. K. Veda, J. Morita and J. Komano, J. Antibiotics, 34, 317 (1981).

    Google Scholar 

  12. C.J. Reed and K.T. Douglas, Biochem. J., 275, 601 (1991).

    PubMed  Google Scholar 

  13. M. Chikira, Takahirosato, W.E. Antholine and D.H. Petering, J. Biol. Chem., 266, 2859 (1991).

    PubMed  Google Scholar 

  14. S. Hashimoto and Y. Nakamura, J. Chem. Soc. Chem. Commun., 1413 (1995).

  15. D.S. Sigman, A. Majumder and D.M. Perrin, Chem. Rev., 93, 2295 (1993).

    Google Scholar 

  16. S.E. Livingstone, Coord. Chem. Rev., 7, 59 (1971).

    Google Scholar 

  17. M.J.M. Compbell, Coord. Chem. Rev., 15, 279 (1975).

    Google Scholar 

  18. M. Akbar Ali and S.E. Livingstone, Coord. Chem. Rev., 13, 101 (1974).

    Google Scholar 

  19. D.X. West and A.E. Liberta, Coord. Chem. Rev., 123, 49 (1993).

    Google Scholar 

  20. K. Hussain Reddy, P. Sambasiva Reddy and P. Ravindra Babu, Transition Met. Chem., 25, 505 (2000).

    Google Scholar 

  21. T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular cloning, A Laboratory Manual, Cold Spring Harbor Lab Press Plain View, NY 1982, pp 149-172.

    Google Scholar 

  22. C.R.K. Rao and P.S. Zacharias, Polyhedron, 16, 1201 (1997).

    Google Scholar 

  23. S. Mandal, R. Shukla and P.K. Bharadwaj, Polyhedron, 11, 1885 (1992).

    Google Scholar 

  24. M.A. Hitchman and T.D. Waite, Inorg. Chem., 15, 2150 (1976).

    Google Scholar 

  25. K.W. Penfield, A.A. Gewirth and E.J. Solomon, J. Am. Chem. Soc., 107, 4519 (1985).

    Google Scholar 

  26. K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York, 1978.

    Google Scholar 

  27. D. Kivelson and R. Neiman, J. Chem. Phy., 35, 149 (1961).

    Google Scholar 

  28. B. Singh, B.P. Yadava and R.C. Aggarwal, Indian J. Chem., 23A, 441 (1984).

    Google Scholar 

  29. G. Giordano and R.D. Bereman, J. Am. Chem. Soc., 96, 1019 (1974).

    PubMed  Google Scholar 

  30. A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. (London), 206, 164 (1961).

    Google Scholar 

  31. V. Sakaguchi and A.W. Addison, J. Chem. Soc., Dalton Trans., 600 (1979).

  32. R. Shukla, S. Mandal and P.K. Bharadwaj, Polyhedron, 12, 83 (1993).

    Google Scholar 

  33. X.H. Bu, Z.H. Zhang, X. Cao, S. Ma and Y. Tiohen, Polyhedron, 16, 3525 (1997).

    Google Scholar 

  34. A. Pasini, E. Bermini and M. Scaglia, Polyhedron, 15, 4461 (1996).

    Google Scholar 

  35. S. Djebbar-Sid, O. Benali-Baitich and J.P. Deloume, Polyhedron, 16, 2175 (1997).

    Google Scholar 

  36. C.C. Cheng, S.E. Rokita and C.J. Burrows, Angew Chem. Int. Edit. Engl. 32, 277 (1993).

    Google Scholar 

  37. X.H. Bu, Z.H. Zhang, X. Cao, S. Ma and Y. Tichen, Polyhedron, 16, 3525 (1997).

    Google Scholar 

  38. K. Hussain Reddy, M. Radhakrishna Reddy and K. Mohan Raju, Ind. J. Chem., 38A, 299-302 (1999).

    Google Scholar 

  39. P. Marfey and E. Robinson, Mutat. Res., 86, 155 (1981).

    PubMed  Google Scholar 

  40. K. Yamamoto and S.C. Kawanishi, J. Biol. Chem., 264, 15435 (1989).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, K.H., Reddy, P.S. & Babu, P.R. Nuclease activity of mixed ligand complexes of copper(II) with heteroaromatic derivatives and picoline. Transition Metal Chemistry 25, 505–510 (2000). https://doi.org/10.1023/A:1007038514536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007038514536

Keywords

Navigation