Skip to main content
Log in

Synthesis, Structure, and Biological Activity of Copper(II), Nickel(II), Cobalt(III), and Iron(III) Coordination Compounds with 2-{2-[(Prop-2-en-1-yl)carbamothioyl]hydrazinylidene}propanoic Acid

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

2-Oxopropanoic acid reacts in ethanol with N-(prop-2-en-1-yl)hydrazinecarbothioamide in a 1 : 1 mole ratio to form thiosemicarbazone H2L. Coordination compounds Cu(HL)X [X = Cl, Br, NO3], Cu(H2O)(L), Ni(HL)2, Co(HL)2X [X = Cl, Br], and Fe(HL)2X [X = NO3, Br] are formed in the reactions of H2L with copper(II), nickel(II), cobalt(II), and iron(III) salts. The reactions of Cu(H2O)(L) with imidazole (Im) and 3,4-dimethylpyridine (3,4-Lut) result in mixed-ligand complexes Cu(A)(L) [A = Im, 3,4-Lut]. The structures of two copper complexes were determined by single crystal X-ray diffraction analysis. The synthesized complexes exhibit selective antimicrobial and antifungal activity in the concentration range of 15.62–1000 μg/mL. The introduction of amines into the inner sphere of copper complexes leads to an increase in the antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme

Similar content being viewed by others

REFERENCES

  1. Beraldo, H. and Gambino, D., Mini Rev. Med. Chem., 2004, vol. 4, no. 1, p. 31. https://doi.org/10.2174/1389557043487484

    Article  CAS  PubMed  Google Scholar 

  2. Gulea, A.P., Graur, V.O., Chumakov, Yu.M., Petrenko, P.A., Balan, G.G., Burduniuc, O.S., Tsapkov, V.I., and Rudic, V.F., Russ. J. Gen. Chem., 2019, vol. 89, no. 5, p. 953. https://doi.org/10.1134/S1070363219050153

    Article  CAS  Google Scholar 

  3. Pahontu, E., Fala, V., Gulea, A., Poirier, D., Tapcov, V., and Rosu, T., Molecules, 2013, vol. 18, no. 8, p. 8812. https://doi.org/10.3390/molecules18088812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lukmantara, A.Y., Kalinowski, D., Kumar, N., and Richardson, D.R., J. Inorg. Biochem., 2014, vol. 141, p. 43. https://doi.org/10.1016/j.jinorgbio.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  5. Diaz, A., Cao, R., and Garcia, A., Monatsh. Chem., 1994, vol. 125, nos. 8–9, p. 823. https://doi.org/10.1007/BF00812694

    Article  CAS  Google Scholar 

  6. Pathan, A.H., Bakale, R.P., Naik, G.N., Frampton, C.S., and Gudasi, K.B., Polyhedron, 2012, vol. 34, no. 1, p. 149. https://doi.org/10.1016/j.poly.2011.12.033

    Article  CAS  Google Scholar 

  7. Pathan, A.H., Ramesh, A.K., Bakale, R.P., Naik, G.N., Rohit Kumar, H.G., Frampton, C.S., Advi Rao, G.M., and Gudasi, K.B., Inorg. Chim. Acta, 2015, vol. 430, p. 216. https://doi.org/10.1016/j.ica.2015.03.013

    Article  CAS  Google Scholar 

  8. Baldini, M., Belicchi-Ferrari, M., Bisceglie, F., Dall’Aglio, P. P., Pelosi, G., Pinelli, S., and Tarasconi, P., Inorg. Chem., 2004, vol. 43, no. 22. P. 7170. https://doi.org/10.1021/ic049883b

  9. Pelosi, G., Open Crystallogr. J., 2010, vol. 3, p. 16. https://doi.org/10.2174/1874846501003010016

    Article  CAS  Google Scholar 

  10. Prisakar’, V.I., Tsapkov, V.I., Buracheeva, S.A., Byrke, M.S., and Gulya, A.P., Pharm. Chem. J., 2005, vol. 39, no. 6, p. 313. https://doi.org/10.1007/s11094-005-0142-8

    Article  CAS  Google Scholar 

  11. Samus’, N.M., Gulya, A.P., Tsapkov, V.I., Chumakov, Y.M., and Roshu, T., Russ. J. Gen. Chem., 2006, vol. 76, no. 7, p. 1100. https://doi.org/10.1134/s1070363206070164

    Article  Google Scholar 

  12. Belicchi-Ferrari, M., Bisceglie, F., Buluggiu, E., Pelosi, G., and Tarasconi, P., Polyhedron, 2010, vol. 29, no. 10, p. 2134. https://doi.org/10.1016/j.poly.2010.04.009

    Article  CAS  Google Scholar 

  13. Belicchi-Ferrari, M., Bisceglie, F., Buluggiu, E., Pelosi, G., and Tarasconi, P., Polyhedron, 2009, vol. 28, no. 6, p. 1160. https://doi.org/10.1016/j.poly.2009.01.013

    Article  CAS  Google Scholar 

  14. Allen, F.H., Acta Crystallogr. B, 2002, vol. 58, p. 380. https://doi.org/10.1107/S0108768102003890

    Article  CAS  PubMed  Google Scholar 

  15. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.34.76, 2003.

  16. Sheldrich, G.M., Acta Crystallogr. (А), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  17. Gulea, A., Poirier, D., Roy, J., Stavila, V., Bulimestru, I., Tapcov, V., and Popovschi, L, J. Enzyme Inhib. Med. Chem., 2008, vol. 23, no. 6, p. 806. https://doi.org/10.1080/14756360701743002

    Article  CAS  PubMed  Google Scholar 

  18. Pahontu, E., Usataia, I., Graur, V., Chumakov, Yu., Petrenko, P., Gudumac, V., and Gulea, A., Appl. Organometal. Chem., 2018, vol. 32, no. 12, p. e4544. https://doi.org/10.1002/aoc.4544

Download references

Funding

The work was carried out within the framework of the State program of the Republic of Moldova (project 20.80009.5007.10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. О. Graur.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulea, А.P., Graur, V.О., Diurici, E.C. et al. Synthesis, Structure, and Biological Activity of Copper(II), Nickel(II), Cobalt(III), and Iron(III) Coordination Compounds with 2-{2-[(Prop-2-en-1-yl)carbamothioyl]hydrazinylidene}propanoic Acid. Russ J Gen Chem 90, 2120–2127 (2020). https://doi.org/10.1134/S107036322011016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322011016X

Keywords:

Navigation