Skip to main content
Log in

Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The plasma synthesis of ammonia has been studied in a nitrogen–hydrogenplasma using a strong electric field discharge at ambient pressure andtemperature. With this method, N2 and H2 molecules are ionized anddissociated and a large number of free atoms, ions, and radicals areformed in a nonequilibrium plasma after inelastic collisions. The finalproduct was mainly ammonia, including a small amount of hydrazine. WhenMgO powder, used as a catalyst, was smeared on the surface of the electrodeplates, the yields of ammonia increased about 1.54–1.75 times andreached 5000 ppm (0.5% v/v). In this way, plasma synthesis of ammonia atambient pressure is realized and a new method is provided for inorganicsynthesis, which consumes little energy and simplifies the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Miyahara, Chem Lett., p. 1871 (1983).

  2. M. Touvelle, J. L. Munoz Licea, and M. Venugopalan, Plasma Chem. Plasma Process. 7, 101 (1987).

    Google Scholar 

  3. K. S. Yin and M. Venugopalan, Plasma Chem. Plasma Process. 3, 343 (1983).

    Google Scholar 

  4. H. Uyama, T. Uchikura, H. Niijima, and O. Matsumoto, Chem. Lett., p. 555 (1987).

  5. H. Uyama and O. Matsumoto, Plasma Chem. Plasma Process. 9, 13 (1989).

    Google Scholar 

  6. K. Sugiyama, K. Akazawa, and M. Oshima et al., Plasma Chem. Plasma Process. 6, 179 (1986).

    Google Scholar 

  7. H. Uyama, T. Nakamura, S. Tanaka, and O. Matsumoto, Plasma Chem. Plasma Process. 13, 117 (1993).

    Google Scholar 

  8. S. Tanaka, H. Uyama, and O. Matsumoto, Plasma Chem. Plasma Process. 14, 491 (1994).

    Google Scholar 

  9. J. Amorim, G. Baravian, and A. Ricard, Plasma Chem. Plasma Process. 15, 721 (1995).

    Google Scholar 

  10. T. A. Miller, Plasma Chem. Plasma Process, 1, 13 (1981).

    Google Scholar 

  11. E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York (1964), p. 377.

    Google Scholar 

  12. M. D. Bai, X. Y. Bai, Z. T. Zhang, and H. Leng, IEEE-IAS 32nd Ann. Meet. New Orleans, LA (1998), p. 10.

  13. M. D. Bai, Z. T. Zhang, H. Leng, and X. Y. Bai, J. Air Waste Manage. Assoc. 49, 174 (1999).

    Google Scholar 

  14. M. D. Bai, X. Y. Bai, R. Fu, and Z. T. Zhang, Chinese Sci. Bull. (China) 40, 240 (1995).

    Google Scholar 

  15. X. Y. Bai, M. D. Bai, and C. W. Yi, China Environ. Sci. (China), 13, 200 (1993).

    Google Scholar 

  16. T. Oda, Proc. Inst. Electrostat. Jpn. 19, 283 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingdong, B., Xiyao, B., Zhitao, Z. et al. Synthesis of Ammonia in a Strong Electric Field Discharge at Ambient Pressure. Plasma Chemistry and Plasma Processing 20, 511–520 (2000). https://doi.org/10.1023/A:1007031906589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007031906589

Navigation