Skip to main content
Log in

Chemical Kinetics Database and Predictive Schemes for Humid Air Plasma Chemistry. Part I: Positive Ion–Molecule Reactions

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Reliable kinetic and thermodynamic data are required to model the evolution of electric discharge or electron-beam decomposition chemistry of gases in humid air streams. In this first segment of a continuing series, we provide a core database describing the initially dominant ion-neutral molecule reactions in humid air plasmas. Recommended reaction rate data and extrapolation tools are presented in a manner to facilitate prediction of reactivities and reaction channels as a function of temperature, pressure, and applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Bortner and T. Baurer, Defense Nuclear Agency Reaction Rate Handbook, 2nd ed., Revision No. 7, NASA STAR Technical Rept. Issue DNA-1948H-REV-7, DASIAC, DoD Nuclear Information and Analysis Center, General Electric TEMPO, Santa Barbara CA (1978).

    Google Scholar 

  2. C. D. Sutherland and J. Zinn, Chemistry Computations for Irradiated Hot Air, Los Alamos Scientific Laboratory Informal Rept. LA-6055-MS, Los Alamos National Laboratory, Los Alamos, New Mexico (1975).

    Google Scholar 

  3. I. Yasumasa, S. Matsuoka, M. Takabe, and A. A. Viggiano, Gas Phase Ion–Molecule Reaction Rate Constants Through 1986, The Mass Spectroscopy Group of Japan, Tokyo, Japan (1987). This compilation contains extracted material from the following: (a) D. L. Albritton, Atom. Data Nucl. Data Tables, 22, 1 (1978). (b) V. G. Anicich and W. T. Huntress, Jr., Astrophys. J. Suppl., Vol. 62, p. 553 (1986). (c) L. W. Sieck, Rate Constants for IonMolecule Reactions. Organic Ions Other Than Those Containing Only C and H, NSRDS-NBS 64 (1979). (d) L. W. Sieck and S. G. Lias, J. Phys. Chem. Ref. Data 5, 1123 (1976). (e) L. I. Virin, R. B. Dzhagatspanyan, G. V. Karachevtsev, and V. L. Talroze, Rate Constants for IonMolecule Reactions, Nauka, Moscow (1979) (in Russian). Reference 3 also contains data from 449 other journal articles published during and after 1977.

    Google Scholar 

  4. R. G. Keesee and A. W. Castleman, Jr., J. Phys. Chem. Ref. Data 15, 1011 (1986).

    Google Scholar 

  5. J. C. Person, D. O. Ham, and A. A. Boni, Unified Projection of the Performance and Economics of Radiation-Induced NO x/SOx Emission Control Technologies, U.S. Department of Energy Rept. PSI-259/TR-542, Physical Sciences Inc., Andover, Massachusetts (1985).

    Google Scholar 

  6. H. Ma¨tzing, Advan. Chem. Phys. 80, 315 (1991).

    Google Scholar 

  7. Y. Ikezoe, S. Matsuoka, and H. Nakamura, Chem. Phys. Lett. 177, 366 (1991), and references to post-1986 publications from their laboratory quoted therein.

    Google Scholar 

  8. Y. K. Lau, S. Ikuta, and P. Kebarle, J. Amer. Chem. Soc. 104, 1462 (1982).

    Google Scholar 

  9. G. Gioumousis and D. P. Stevenson, J. Chem. Phys. 29, 294 (1958).

    Google Scholar 

  10. T. Su and W. J. Chesnavitch, J. Chem. Phys. 76, 5183 (1982).

    Google Scholar 

  11. J. Troe, Ber. Bunsenges. Phys. Chem. 87, 161 (1983); R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87, 169 (1983).

    Google Scholar 

  12. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation Number 12, JPL Publ. 97-4, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (1977).

    Google Scholar 

  13. G. H. Wannier, Bell Syst. Tech. J. 32, 170 (1953).

    Google Scholar 

  14. H. W. Ellis, M. G. Thackston, E. W. McDaniel, and E. A. Mason, Atomic Data and Nuclear Data Tables 31, 113 (1984).

    Google Scholar 

  15. E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases, Wiley, New York (1973); E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases, Wiley, New York (1988).

    Google Scholar 

  16. M. McFarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf (a) J. Chem. Phys. 59, 6610 (1973). (b) J. Chem. Phys. 59, 6620 (1973); (c) J. Chem. Phys. 59, 6629 (1973).

    Google Scholar 

  17. (a) C. Shumate, R. H. St. Louis, and H. H. Hill, Jr., J. Chromatogr., Chromatogr. Rev. 373, 141 (1986). (b) H. Bohringer, D. W. Fahey, W. Lindinger, F. Howorka, F. C. Fehsenfeld, and D. L. Albritton, Intern. J. Mass Spectrom. Ion Proc. 81, 45 (1987).

    Google Scholar 

  18. J. B. Marquette, B. R. Rowe, G. Dupeyrat, G. Poissant, and C. Rebrion, Chem. Phys. Lett. 122, 431 (1985).

    Google Scholar 

  19. J. D. C. Jones, K. Birkinshaw, and N. D. Twiddy, Chem. Phys. Lett. 77, 484 (1981).

    Google Scholar 

  20. S. Matsuoka and H. Nakamura, J. Chem. Phys. 89, 5663 (1988).

    Google Scholar 

  21. K. Hiraoka, J. Chem. Phys. 91, 6071 (1989).

    Google Scholar 

  22. S. Matsuoka, H. Nakamura, and T. Tamura, J. Chem. Phys. 79, 825 (1983).

    Google Scholar 

  23. C. J. Howard, V. M. Bierbaum, H. W. Rundle, and F. Kaufman, J. Chem. Phys. 57, 3491 (1972).

    Google Scholar 

  24. J. Choi, K. T. Kuwata, B. Haas, Y. Cao, M. S. Johnson, and M. Okumura, J. Chem. Phys. 100, 7153 (1994).

    Google Scholar 

  25. N. G. Adams, D. Smith, and J. F. Paulson, J. Chem. Phys. 72, 288 (1980).

    Google Scholar 

  26. D. W. Fahey, I. Dotan, F. C. Fehsenfeld, D. L. Albritton, and L. A. Viehland, J. Chem. Phys. 74, 3320 (1981).

    Google Scholar 

  27. W. Lindinger, J. Chem. Phys. 64, 3720 (1976).

    Google Scholar 

  28. A. B. Rakshit, Intern. J. Mass Spectrom. Ion Phys. 41, 185 (1982).

    Google Scholar 

  29. K. Hiraoka, J. Chem. Phys. 89, 3190 (1988). This reference also contains thermochemical values for O +2 (O2)n clusters up to n = 8.

    Google Scholar 

  30. M. Mautner (Meot-Ner), J. Amer. Chem. Soc. 114, 3312 (1992).

    Google Scholar 

  31. J. Zinn, C. D. Sutherland, and P. J. Hay, J. Geophys. Res. 95, 9009 (1990).

    Google Scholar 

  32. M. A. French, L. P. Hills, and P. Kebarle, Can. J. Chem. 51, 456 (1973).

    Google Scholar 

  33. L. J. Puckett and M. W. Teague, J. Chem. Phys. 54, 2564 (1971).

    Google Scholar 

  34. D. Smith, N. G. Adams, E. Alge, and E. Herbst, Astrophys. J. 272, 365 (1983).

    Google Scholar 

  35. J. L. McCrumb and P. Warneck, Z. Naturforsch. 34a, 1410 (1979).

    Google Scholar 

  36. J. A. Vanderhoff and J. M. Heimerl, Bull. Amer. Phys. Soc. 18, 804 (1973).

    Google Scholar 

  37. D. Smith, N. G. Adams, and D. Grief, J. Atmos. Terr. Phys. 39, 513 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieck, L.W., Heron, J.T. & Green, D.S. Chemical Kinetics Database and Predictive Schemes for Humid Air Plasma Chemistry. Part I: Positive Ion–Molecule Reactions. Plasma Chemistry and Plasma Processing 20, 235–258 (2000). https://doi.org/10.1023/A:1007021207704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007021207704

Navigation