Skip to main content
Log in

The intermediate filament protein peripherin is a marker for cerebellar climbing fibres

  • Published:
Journal of Neurocytology

Abstract

Immunocytochemical staining with antibodies to the class III intermediate filament protein peripherin reveals discrete subpopulations of neurons and nerve fibres throughout the rat central nervous system. Some of these fibres enter the cerebellar granular and molecular layers. Here we use light and electron microscopic immunocytochemistry and confocal fluorescence microscopy to identify the peripherin positive fibres in the molecular layer of the cerebella of various mammals. 1) The peripherin positive fibres in the molecular layer have morphological attributes of climbing fibres, and peripherin positive fibres are also detected in the olivo-cerebellar tract. Furthermore peripherin positive neurons can be seen in the inferior olive, from which climbing fibres originate. (2 ) The peripherin positive molecular layer fibres rapidly degenerate in rats treated with 3-acetylpyridine (3-AP), a reagent which destroys neurons in the inferior olive, and the time course of degeneration of these mirrors that previously described for 3-AP induced destruction of climbing fibres. (3) Cerebella of other mammal species tested (mouse, rabbit, pig, cow and human) revealed a similar peripherin staining pattern in the cerebellum, including fibres in the molecular layer with the morphology of climbing fibres. (4) We also noted peripherin positive spinocerebellar and vestibulocerebellar mossy fibres in the cerebellar granular layer of folia known to receive these inputs. (5) A subset of perivascular nerve fibres are also peripherin positive. These results show that peripherin is a useful marker for mammalian cerebellar climbing fibres, and that a subset of morphologically distinct cerebellar mossy fibres are also peripherin positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. A. & Flumerfelt, B. A. (1980) A light and electron microscopic study of the effects of 3-acetylpyridine intoxication on the inferior olivary complex and cerebellar cortex. Journal of Comparative Neurology 190,157-74.

    Google Scholar 

  • Bignami, A. & Dahl, D. (1977) Specificity of the glial fibrillary acidic protein for astroglia. Journal of Histochemistry and Cytochemistry 25,466-9.

    Google Scholar 

  • Brody, B. A., Ley, C. A. & Parysek, L. M. (1989) Selective distribution of the 57 kDa neural intermediate filament protein in the rat CNS. Journal of Neuroscience 9,2391-401.

    Google Scholar 

  • Carden, M. J., Trojanowski, J. Q,. Schlaepfer, W. W. & Lee, V. M. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. Journal of Neuroscience 7,3489-504.

    Google Scholar 

  • Chiu, F. C., Barnes, E. A., Das, K., Haley, J., Socolow, P., Macaluso, F. P. & Fant, J. (1989) Characterization of a novel 66 kd subunit of mammalian neurofilaments. Neuron 2,1435-45.

    Google Scholar 

  • Cui, C., Stambrook, P. J. & Parysek, L. M. (1995) Peripherin assembles into homopolymers in SW13 cells. Journal of Cell Science 108,3279-84.

    Google Scholar 

  • Cummings, S., Elde, R., Ells, J. & Lindall, A. (1983) Corticotrophin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. Journal of Neuroscience 3,1355-68.

    Google Scholar 

  • Cummings, S. L. (1989) Distribution of corticotrophinreleasing factor in the cerebellum and precerebellar nuclei of the cat. Journal of Comparative Neurology 289,657-75.

    Google Scholar 

  • Denk, H., Haider, M., Kovac, W. & Studynka, G. (1968) Verhaltensänderung und Neuropathologie bei der 3-Acetylpyridinvergiftung der Ratte. Acta Neuropathologica 10,34-44.

    Google Scholar 

  • Desclin, J. C. (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Research 77,365-84.

    Google Scholar 

  • Desclin, J. C. & Escubi, J. (1974) Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Research 77,349-64.

    Google Scholar 

  • Doetsch, F., Garcia-Verdugo, J. M. & Alvarezbuylla, A. (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. Journal of Neuroscience 17,5046-61.

    Google Scholar 

  • DrÄger, U. C. (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303,169-72.

    Google Scholar 

  • Elgar, G., Sandford, R., Aparicio, S., Macrae, A., Venkatesh, B. & Brenner, S. (1996) Small is beautiful: comparative genomics with the pufferfish (Fugu rubripes). Trends in Genetics 12,145-50.

    Google Scholar 

  • Errante, L. D., Wiche, G. & Shaw, G. (1994) Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. Journal of Neuroscience Research 37,515-28.

    Google Scholar 

  • Fliegner, K. H., Ching, G. Y. & Liem, R. K. (1990) The predicted amino acid sequence of alpha-internexin is that of a novel neuronal intermediate filament protein. Journal EMBO 9,749-55.

    Google Scholar 

  • Fliegner, K. H. & Liem, R. K. (1991) Cellular and molecular biology of neuronal intermediate filaments. International Reviews of Cytology 131,109-67.

    Google Scholar 

  • Glasgow, E., Druger, R. K., Levine, E. M., Fuchs, C. & Schechter, N. (1992) Plasticin, a novel type III neurofilament protein from goldfish retina; increased expression during optic nerve regeneration. Neuron 9,373-81.

    Google Scholar 

  • Harris, J., Ayyub, C. & Shaw, G. (1991) A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. Journal of Neuroscience Research 30,47-62.

    Google Scholar 

  • Harris, J., Moreno, S., Shaw, G. & Mugnaini, E. (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons. Journal of Neurocytology 22,1039-59.

    Google Scholar 

  • Hockfield, S. & Mckay, R. D. G. (1985) Identification of major cell classes in the developing mammalian nervous system. Journal of Neuroscience 5,3310-28.

    Google Scholar 

  • Huber, G. & Matus, A. (1984) Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. Journal of Neuroscience 4,151-60.

    Google Scholar 

  • Ji, Z. & Hawkes, R. (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules I and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61,935-54.

    Google Scholar 

  • Kaplan, M. P., Chin, S. S., Fliegner, K. H. & Liem, R. K. (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. Journal of Neuroscience 10,2735-48.

    Google Scholar 

  • Lendahl, U., Zimmerman, L. B. & Mckay, R. D. G. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60,585-95.

    Google Scholar 

  • Leonard, D. G., Gorham, J. D., Cole, P., Greene, L. A. & Ziff, E. B. (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. Journal of Cell Biology 106,181-93.

    Google Scholar 

  • Mugnaini, E. (1972) The histology and cytology of the cerebellar cortex. In The Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections and Cerebellar Cortex(edited by Larsell, O. & Jansen, J.) pp. 201-51. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Mugnaini, E. & Nelson, B. J. (1989) Corticotropin-releasing factor in the olivo-cerebellar system and the feline olivary hypertrophy. Experimental Brain Research Supplement 17,187-97.

    Google Scholar 

  • Oblinger, M. M., Wong, J. & Parysek, L. M. (1989) Axotomy-induced changes in the expression of a type III neuronal intermediate filament gene. Journal of Neuroscience 9,3766-75.

    Google Scholar 

  • Osborn, M., Debus, E. & Weber, K. (1984) Monoclonal antibodies specific for vimentin. European Journal of Cell Biology 34,137-43.

    Google Scholar 

  • Osborn, M. & Weber, K. (1982) Intermediate filaments cell-type-specific markers in differentiation and pathology. Cell 31,303-6.

    Google Scholar 

  • Pachter, J. S. & Liem, R. K. (1985) Alpha-internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. Journal of Cell Biology 101,1316-22.

    Google Scholar 

  • Palay, S. L. & Chan-Palay, V. (1974) Cerebellar Cortex: Cytology and Organization. New York: Springer Verlag.

    Google Scholar 

  • Parysek, L. M., Chisholm, R. L., Ley, C. A. & Goldman, R. D. (1988) A type III intermediate filament gene is expressed in mature neurons. Neuron 1,395-401.

    Google Scholar 

  • Parysek, L. M. & Goldman, R. D. (1988) Distribution of a novel 57 kDa intermediate filament (IF) protein in the nervous system. Journal of Neuroscience 8,555-63.

    Google Scholar 

  • Portier, M. M., de Nechaud, B. & Gros, F. (1983) Peripherin, a new member of the intermediate filament protein family. Developmental Neuroscience 6,335-44.

    Google Scholar 

  • RamÓn-y-Cajal, S. (1955) Histologie du Systeme Nerveux de L’homme et des Vertébrés.Madrid: Instituto Ramón-Y-Cajal.

    Google Scholar 

  • Rossi, F., Borsello, T., Vaudano, E. & Strata, P. (1993) Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Neuroscience 53,759-78.

    Google Scholar 

  • Schnitzer, J., Franke, W. W. & Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. Journal of Cell Biology 90, 435-47.

    Google Scholar 

  • Schwob, J. E., Farber, N. B. & Gottlieb, D. I. (1986) Neurons of the olfactory epithelium in adult rats contain vimentin. Journal of Neuroscience 6, 208-17.

    Google Scholar 

  • Sharpe, C. R., Pluck, A. & Gurdon, J. B. (1989) XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue. Development 107,701-14.

    Google Scholar 

  • Shaw, G. (1991) Neurofilament proteins. In The Neuronal Cytoskeleton(edited by Burgoyne, R. D.) pp. 185-214. New York: Alan R. Liss.

    Google Scholar 

  • Shaw, G. (1998) Neurofilament Proteins. Austin, Texas: RG Landes.

    Google Scholar 

  • Shaw, G., Osborn, M. & Weber, K. (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. European Journal of Cell Biology 26,68-82.

    Google Scholar 

  • Shaw, G., Osborn, M. & Weber, K. (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. European Journal of Cell Biology 42,1-9.

    Google Scholar 

  • Shaw, G. & Weber, K. (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298,277-9.

    Google Scholar 

  • Shaw, G. & Weber, K. (1983) The structure and development of the rat retina: an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. European Journal of Cell Biology 30,219-32.

    Google Scholar 

  • Strata, P. & Rossi, F. (1994) Cellular plasticity at the climbing fibre-Purkinje cell synapse as a model of plasticity in adulthood and ageing. Neurochemistry International 25,85-91.

    Google Scholar 

  • Trojanowski, J. Q., Walkenstein, N. & Lee, V. M. (1986) Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. Journal of Neuroscience 6,650-60.

    Google Scholar 

  • Troy, C. M., Muma, N. A., Greene, L. A., Price, D. L. & Shelanski, M. L. (1990) Regulation of peripherin and neurofilament expression in regenerating rat motor neurons. Brain Research 529,232-8.

    Google Scholar 

  • Troy, C. M., Greene, L. A. & Shelanski, M. L. (1992) Neurite outgrowth in peripherin-depleted PC12 cells. Journal of Cell Biology 117,1085-92.

    Google Scholar 

  • Tucker, R. P., Binder, L. I. & Matus, A. I. (1988) Neuronal microtubule-associated proteins in the embryonic avian spinal cord. Journal of Comparative Neurology 271,44-55.

    Google Scholar 

  • Voogd, J., Gerritts, N. M. & Marani, E. (1995) Cerebellum. In The Rat Nervous System(edited by Paxinos, G.) pp. 251-91. San Diego: Academic Press.

    Google Scholar 

  • Wong, J. & Oblinger, M. M. (1990) Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons. Journal of Neuroscience Research 27,332-41.

    Google Scholar 

  • Yen, S. H. & Fields, K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. Journal of Cell Biology 88,115-26.

    Google Scholar 

  • Zagrebelsky, M., Rossi, F., Hawkes, R. & Strata, P. (1996) Topographically organized climbing fibre sprouting in the adult rat cerebellum. European Journal of Neuroscience 8, 1051-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errante, L., Tang, D., Gardon, M. et al. The intermediate filament protein peripherin is a marker for cerebellar climbing fibres. J Neurocytol 27, 69–84 (1998). https://doi.org/10.1023/A:1006991104595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006991104595

Keywords

Navigation