Skip to main content
Log in

Hyperactivation of Mitogen-Activated Protein Kinase Increases Phospho-Tau Immunoreactivity Within Human Neuroblastoma: Additive and Synergistic Influence of Alteration of Additional Kinase Activities

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitogen-activated protein (MAP) kinase phosphorylates tau in cell-free analyses, but whether or not it does so within intact cells remains controversial. In the present study, microinjection of MAP kinase into SH-SY-5Y human neuroblastoma cells increased tau immunoreactivity toward the phosphodependent antibodies PHF-1 and AT-8. In contrast, treatment with a specific inhibitor of MAP kinase (PD98059) did not diminish “basal” levels of these immunoreactivities in otherwise untreated cells. These findings indicate that hyperactivation of MAP kinase increases phospho-tau levels within cells, despite that MAP kinase apparently does not substantially influence intracellular tau phosphorylation under normal conditions. These findings underscore that results obtained following inhibition of kinase activities do not necessarily provide an indication of the consequences accompanying hyperactivation of that same kinase. Several studies conducted in cell-free systems indicate that exposure of tau to multiple kinases can have synergistic effects on the nature and extent of tau phosphorylation. We therefore examined whether or not such effects could be demonstrated within these cells. Site-specific phospho-tau immunoreactivity was increased in additive and synergistic manners by treatment of injected cells with TPA (which activates PKC), calcium ionophore (which activates calcium-dependent kinases), and wortmannin (which inhibits PIP3 kinase). Alteration in total tau levels was insufficient to account for the full extent of the increase in phospho-tau immunoreactivity. These additional results indicate that multiple kinase activities modulate the influence of MAP kinase on tau within intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arioka, M., Tsukamoto, M., Ishiguro, K., Kato, R., Sato, K., Imahori, K., and Uchida, T. (1993). Tau protein kinase-1 is involved in the regulation of the normal phosphorylation state of tau protein. J. Neurochem. 60:461–468.

    Google Scholar 

  • Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seiteberger, F., Grundke-Iqbal, I., Iqbal, I., and Wisniewski, H. M. (1989). Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res. 477:90–99.

    Google Scholar 

  • Baudier, J., and Cole, R. D. (1987). Phosphorylation of tau proteins to a state like that in Alzheimer's brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J. Biol. Chem. 262:17577–17583.

    Google Scholar 

  • Blanchard, B. J., Raghunandan, R. D., Roder, H. M., and Ingram, V. M. (1994). Hyperphosphorylation of human tau by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: Relation to Alzheimer's disease. Biochem. Biophys. Res. Commun. 200:187–194.

    Google Scholar 

  • Boyce, J. J., and Shea, T. B. (1997). Phosphorylation events mediated by protein kinase Cα and ε participate in the regulation of tau steady-state levels and generation of certain “Alzheimer-like” phospho-epitopes. Int. J. Dev. Neurosci. 15:295–307.

    Google Scholar 

  • Clark, E. A., Leach, K. L., Trojanowski, J. Q., and Lee, V. M. (1991). Characterization and differential distribution of the three major human protein kinase C isozymes (PKC alpha, PKC beta, and PKC gamma) of the central nervous system in normal and Alzheimer's disease brains. Lab. Invest. 64:35–44.

    Google Scholar 

  • Cressman, C. M., and Shea, T. B. (1995). Hyperphosphorylation of tau and filopodial retraction following microinjection of protein kinase C catalytic subunits. J. Neurosci. Res. 42:648–656.

    Google Scholar 

  • Cressman, C. M., Boyce, J. B., Wheeler, E., Chang, M., and Shea, T. B. (1995). Site-specific synergism between PKC and MAP kinase in tau hyperphosphorylation in intact SH-SY-5Y human neuroblastoma. J. Neurochem. 67(Suppl.):S62.

    Google Scholar 

  • Ekinci, F. J., and Shea, T. B. (1997). Tau phosphorylation is regulated by divergent and convergent signal transduction pathways. J. Neurochem. 69(Suppl.):S208.

    Google Scholar 

  • Felsenstein, K. M., Ingalls, K. M., Hunihan, L. W., and Roberts, S. B. (1994). Reversal of the Swedish familial Alzheimer's disease mutant phenotype in cultured cells treated with phorbol 12,13-dibutyrate. Neurosci. Lett. 174:173–176.

    Google Scholar 

  • Fowler, C. J., Cowburn, R. F., Garlind, A., Winblad, B., and O'Neill, C. (1995). Disturbances in signal transduction mechanisms in Alzheimer's disease. Mol. Cell. Biochem. 149–150:287–292.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.-Y. (1993). The abnormal phosphorylation of tau proteins at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc. Natl. Acad. Sci. USA 90:5066–5070.

    Google Scholar 

  • Goedert, M., Jakes, R., Crowther, R. A., Cohen, P., Vanmechelein, E., Vandermeeren, M., and Cras, P. (1994). Epitope mapped protein tau are dephosphorylated by protein phosphatase 2A-1. FEBS Lett. 312:195–199.

    Google Scholar 

  • Govoni, S., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Bianchetti, A., and Trabucchi, M. (1993). Cytosol protein kinase C downregulation in fibroblasts from Alzheimer's disease patients. Neurology 43:2581–2586.

    Google Scholar 

  • Govoni, S., Racchi, M., Bergamaschi, S., Trabucchi, M., Battaini, F., Bianchetti, A., and Binetti, G. (1996). Defective protein kinase C alpha leads to impaired secretion of soluble beta-amyloid precursor protein from Alzheimer's disease fibroblasts. Ann. N.Y. Acad. Sci. 777:332–337.

    Google Scholar 

  • Hong, M., and Lee, V. M.-Y. (1997). Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J. Biol. Chem. 272:19547–19553.

    Google Scholar 

  • Imahori, K., and Uchida, T. (1997). Physiology and pathology of tau protein kinases in relation to Alzheimer's disease. J. Biochem. (Tokyo) 121:179–188.

    Google Scholar 

  • Johnson, G. V. W., and Foley, V. G. (1993). Calpain-mediated proteolysis of microtubule-associated protein 2 (MAP2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. Res. 34:642–647.

    Google Scholar 

  • Kobayashi, S., Ishiguro, K., Omori, A., Takamatsu, M., Arioka, M., Imahora, K., and Uchida, T. (1993). A cdc-related kinase PSSALRE/cdk5 is homologous with the 30kDa subunit of tau protein kinase II, a proline-directed kinase associated with microtubules. FEBS Lett. 335:171–175.

    Google Scholar 

  • Kosik, K. S., and Greenberg, S. M. (1994). Tau protein and Alzheimer's disease. In Terry, R. D., Katzman, R., and Bick, K. L. (eds.), Alzheimer's Disease, Raven Press, New York, pp. 335–344.

    Google Scholar 

  • Lanius, R. A., Wagey, R., Sahl, B., Beattie, B. L., Feldman, H., Pelech, S. L., and Krieger, C. (1997). Protein kinase C activity and protein levels in Alzheimer's disease. Brain Res. 764:75–80.

    Google Scholar 

  • Latimer, D. A., Gallo, J.-M., Lovestone, S., Miller, C. C. J., Reynolds, C. H., Marquardt, B., Stable, S., Woodgett, J. R., and Anderton, B. H. (1995). Stimulation of MAP kinase by v-raf transformation of fibroblasts fails to induce hyperphosphorylation of transfected tau. FEBS Lett. 365:42–46.

    Google Scholar 

  • Ledesma, M. D., Correase, I., Avila, J., and Diaz-Nido, J. (1992). Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Lett. 308:218–224.

    Google Scholar 

  • Lovestone, S., Reynolds, C. H., Latimer, D., Davis, D. R., Anderton, B. H., Gallo, J.-M., Hanger, D., Mulot, S., Marquardt, B., Stabel, S., Woodgett, J. R., and Miller, C. C. J. (1994). Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 4:1077–1086.

    Google Scholar 

  • Lu, Q., Soria, J. P., and Wood, J. G. (1993). p44mpk MAP kinase induces Alzheimer type alterations in tau function and in primary hippocampal neurons. J. Neurosci Res. 35:439–444.

    Google Scholar 

  • Mandelkow, E.-M., Biernat, J., Drewes, G., Gustke, N., Trinczek, B., and Mandelkow, E. (1995). Tau domains, phosphorylation and interactions with microtubules. Neurobiol. Aging 16:355–362.

    Google Scholar 

  • Masliah, E., Cole, G. M., Hansen, L. A., Mallory, M., Albright, T., Terry, R. D., and Saitoh, T. (1991). Protein kinase C alteration is an early biochemical marker in Alzheimer's disease. J. Neurosci. 11:2759–2767.

    Google Scholar 

  • Matsushima, H., Shimohama, S., Chachin, M., Taniguchi, T., and Kimura, J. (1996). Ca2+-dependent and Ca2+-independent protein kinase C changes in the brain of patients with Alzheimer's disease. J. Neurochem. 67:317–323.

    Google Scholar 

  • Mattson, M. P. (1991). Evidence for the involvement of protein kinase C in neurodegenerative changes in cultured human cortical neurons. Exp. Neurol. 112:95–103.

    Google Scholar 

  • Mattson, M. P., Guthrie, P. B., and Kater, S. B. (1988). Intracellular messengers in the generation and degeneration of hippocampal architecture. J. Neurosci. Res. 20:447–464.

    Google Scholar 

  • Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titanti, K., and Ihara, Y. (1995). Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270:823–829.

    Google Scholar 

  • Munoz-Montano, J. R., Moreno, F. J., Avila, J., and Diaz-Nido, J. (1995). Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett. 411:183–188.

    Google Scholar 

  • Parrizas, M., Saltiel, A. R., and LeRoith, D. (1997). Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J. Biol. Chem. 272:154–161.

    Google Scholar 

  • Pei, J.-J., Sersen, E., Iqbal, K., and Grundke-Iqbal, I. (1994). Expression of protein phosphatases (PP1, PP2A, PP2-B, and PTP-1B) and protein kinases (MAP kinase and p34cdc2) in the hippocampus of patients with Alzheimer disease and normal aged individuals. Brain Res. 655:70–76.

    Google Scholar 

  • Pope, W. B., Enam, S. A., Bawa, N., Miller, B. E., Ghanbari, H. A., and Klein, W. L. (1993). Phosphorylated tau epitope of Alzheimer's disease is coupled to axon development in the avian central nervous system. Exp. Neurol. 120:106–113.

    Google Scholar 

  • Pope, W. B., Lambert, M. P., Leypold, B., Seupaul, R., Sletten, L., Krafft, G., and Klein, W. L. (1994). Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY-5Y. Exp. Neurol. 126:185–194.

    Google Scholar 

  • Pundreddy, S., and Shea, T. B. (1997). AD-like tau phosphorylation in human neuroblastoma cells following PKC hyperactivation is mediated by MAP kinase. Neur. Res. Comm. 21:173–177.

    Google Scholar 

  • Raghunandan, R., and Ingram, V. M. (1995). Hyperphosphorylation of the cytoskeletal protein tau by the MAP-kinase PK40erk: Regulation by prior phosphorylation with cAMP-dependent protein kinase A. Biochem. Biophys. Res. Commun. 215:1056–1066.

    Google Scholar 

  • Saitoh, T., Cole, G., and Huynh, T. V. (1990). Aberrant protein kinase C cascades in Alzheimer's disease. Adv. Exp. Med. Biol. 265:301–310.

    Google Scholar 

  • Sengupta, A., Wu, Q., Grundke-Iqbal, I., Iqbal, K., and Singh, T. J. (1997). Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol. Cell. Biochem. 167:99–105.

    Google Scholar 

  • Shea, T. B. (1997). Phosphatidyl serine alters tau antigenicity, phosphorylation, proteolysis and association with microtubules: Implication for tau function under normal and degenerative conditions. J. Neurosci. Res. 50:114–122.

    Google Scholar 

  • Shea, T. B., and Cressman, C. M. (1999). The order of exposure of tau to signal transduction kinases alters the generation of “AD-like” phosphoepitopes. Cell. Mol. Neurobiol. 19:223–233.

    Google Scholar 

  • Shea, T. B., Klinger, E. P., and Cressman, C. M. (1995a). Calcium influx recruits an additional class of kinases to hyperphosphorylate tau. Neuroreport 6:1437–1440.

    Google Scholar 

  • Shea, T. B., Beermann, M. L., Spencer, M. A., and Nixon, R. A. (1995b). Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J. Neurochem. 65:517–527.

    Google Scholar 

  • Shea, T. B., Spencer, M. J., Beermann, M. L., Cressman, C. M., and Nixon, R. A. (1996). Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: Involvement of calpainmediated hydrolysis of protein kinase C. J. Neurochem. 66:1539–1549.

    Google Scholar 

  • Shea, T. B., Parabhakar, S., and Ekinci, F. J. (1997). β-Amyloid and ionophore-mediated calcium influx evoke neurodegeneration by distinct intracellular pathways: Differential involvement of the calpain/protein kinase C system. J. Neurosci. Res. 49:759–768.

    Google Scholar 

  • Shimohama, S., and Matsushima, H. (1995). Signal transduction mechanisms in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 9:15–22.

    Google Scholar 

  • Shpetner, H., Joly, M., Hartley, D., and Corvera, S. (1997). Potential sites of PI-3 function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J. Cell Biol. 132:595–605.

    Google Scholar 

  • Singh, T. J., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. (1994a). Modulation of GSK-3 catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS Lett. 358:4–8.

    Google Scholar 

  • Singh, T. J., Haque, N., Grundke-Iqbal, I., and Iqbal, K. (1994b). Rapid Alzheimer-like phosphorylation of tau by the synergistic actions of non-proline dependent kinase and GSK-3. FEBS Lett. 358:267–272.

    Google Scholar 

  • Steiner, B., Mandelkow, E.-M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., Mieskes, G., Söling, H. D., Dreschsel, D., Kirschner, M. W., Goedert, M., and Mandelkow, E. (1990). Phosphorylation of microtubule-associated protein tau: Identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539–3544.

    Google Scholar 

  • Tanaka, T., Iqbal, K., Trenkner, E., Liu, D. J., and Grundke-Iqbal, I. (1995). Abnormally phosphorylated tau in SY5Y human neuroblastoma cells. FEBS Lett. 360:5–9.

    Google Scholar 

  • Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Rao, D., and Lee, V. M.-Y. (1993a). Altered tau and neurofilament proteins in neurodegenerative diseases: Diagnostic implications for Alzheimer's disease and Lewy body dementias. Brain Pathol. 3:45–54.

    Google Scholar 

  • Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Goedert, M., and Lee, V. M.-Y. (1993b). PHF tau (A68): from pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer's disease. Clin. Neurosci. 1:184–191.

    Google Scholar 

  • VanRenterghem, B., Browning, M. D., and Maller, J. L. (1994). Regulation of mitogen-activated protein kinase activation by protein kinases A and C in a cell-free system. J. Biol. Chem. 269:24666–24672.

    Google Scholar 

  • Vincent, I., Jicha, G., Rosado, M., and Dickson, D. W. (1997). Aberrant expression of mitotic Cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J. Neurosci. 17:3588–3596.

    Google Scholar 

  • Wang, H. Y., Pisano, M. R., and Friedman, E. (1994). Attenuated protein kinase C activity and translocation in Alzheimer's disease brain. Neurobiol. Aging 15:293–298.

    Google Scholar 

  • Wood, J. G., Lu, Q., Reich, C., and Zinsmeister, P. (1993). Proline-directed kinase systems in Alzheimer's disease pathology. Neurosci. Lett. 156:83–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekinci, F.J., Shea, T.B. Hyperactivation of Mitogen-Activated Protein Kinase Increases Phospho-Tau Immunoreactivity Within Human Neuroblastoma: Additive and Synergistic Influence of Alteration of Additional Kinase Activities. Cell Mol Neurobiol 19, 249–260 (1999). https://doi.org/10.1023/A:1006981228331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006981228331

Navigation